精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)求函数的单调区间;

2)若函数的图象在点处的切线的斜率为1,问:在什么范围取值时,对于任意的,函数在区间上总存在极值?

【答案】1)当时,函数的单调增区间是,单调减区间是;当时,函数的单调增区间是,单调减区间是;(2.

【解析】

1)利用导数求函数的单调区间的步骤是①求导函数;②解(或<0);③得到函数的增区间(或减区间),

2)点处的切线的斜率为1,即,可求值,代入得的解析式,由,且在区间上总不是单调函数可知:g(1)0g(2)0g(3)0,于是可求m的范围.

1)由知:

时,函数的单调增区间是,单调减区间是

时,函数的单调增区间是,单调减区间是

2)由

.

,

函数在区间上总存在极值,

有两个不等实根且至少有一个在区间

又∵函数是开口向上的二次函数,且

上单调递减,

所以

,解得

综上得:所以当m内取值时,对于任意,函数,在区间上总存在极值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:

则下面结论中不正确的是

A. 新农村建设后,种植收入减少

B. 新农村建设后,其他收入增加了一倍以上

C. 新农村建设后,养殖收入增加了一倍

D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)求函数的单调区间;

2)若对任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的个数有(

1)在空间直角坐标系中,点关于平面的对称点为,则点关于原点的对称点的坐标为.

2.

319084187的最大公约数是53.

4)用秦九韶算法计算多项式,当时的值.

5)古代五行学说认为:物质分金,木,土,水,火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,设事件A表示排列中属性相克的两种物质不相邻,则事件A的概率为.

A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高二全体师生今秋开学前在新校区体验周活动中有优异的表现,学校拟对高二年级进行表彰;

1)若要表彰3个优秀班级,规定从6个文科班中选一个,14个理科班中选两个班级,有多少种不同的选法?

2)年级组拟在选出的三个班级中再选5名学生,每班至少1名,最多2名,则不同的分配方案有多少种?

3)选中的这5名学生和三位年级负责人徐主任,陈主任,付主任排成一排合影留念,规定这3位老师不排两端,且老师顺序固定不变,那么不同的站法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为上位于第一象限的任意一点,过点的直线于另一点,交轴的正半轴于点

(1)若当点的横坐标为,且为等边三角形,求的方程;

(2)对于(1)中求出的抛物线,若点,记点关于轴的对称点为轴于点,且,求证:点的坐标为,并求点到直线的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为曲线的参数方程是为参数).

(1)求直线和曲线的普通方程;

(2)设直线和曲线交于两点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,曲线C的参数方程是,(为参数).

(1)求直线被曲线C截得的弦长;

(2)从极点作曲线C的弦,求各弦中点轨迹的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市调查机构在某设置过街天桥的路口随机调查了110人准备过马路的交通参与者对跨越护栏和走过街天桥的看法,得到如下列联表:

合计

走过街天桥

40

20

60

跨越护栏

20

30

50

合计

60

50

110

附:.

0.050

0.010

0.001

K

3.841

6.635

10.828

则可以得到正确的结论是( )

A.有99%以上的把握认为“选择过马路的方式与性别有关”

B.有99%以上的把握认为“选择过马路的方式与性别无关”

C.在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别有关”

D.在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别无关”

查看答案和解析>>

同步练习册答案