精英家教网 > 高中数学 > 题目详情
18.给出下列四个命题:
①函数y=sin(2x-$\frac{π}{3}$)的图象可以由y=sin2x的图象向右平移$\frac{π}{2}$个单位长度得到;
②已知函数f(x)=(a2-a-1)x${\;}^{\frac{1}{a-2}}$为幂函数,则a=-1;
③若扇形圆心角的弧度数为2,且扇形弧所对的弦长也是2,则这个扇形的面积为$\frac{1}{si{n}^{2}1}$;
④设函数f(x)=lg|x|-sinx的零点个数为n,则n=6.
则其中所有正确命题的序号是②③④.

分析 ①,函数y=sin(2x-$\frac{π}{3}$)的图象可以由y=sin2x的图象向右平移$\frac{π}{6}$个单位长度得到;
②,已知函数f(x)=(a2-a-1)x${\;}^{\frac{1}{a-2}}$为幂函数,则a2-a-1=1且a≠2⇒a=-1;
③,若扇形圆心角的弧度数为2,且扇形弧所对的弦长也是2,则扇形的半径为$\frac{1}{sin1}$,这个扇形的面积为$\frac{1}{2}×2×\frac{1}{si{n}^{2}1}$=$\frac{1}{si{n}^{2}1}$;
④,函数f(x)=lg|x|-sinx的零点个数就是y=lg|x|与 y=sinx的交点,画出两函数图象,根据图判定;

解答 解:对于①,函数y=sin(2x-$\frac{π}{3}$)的图象可以由y=sin2x的图象向右平移$\frac{π}{6}$个单位长度得到,故错;
对于②,已知函数f(x)=(a2-a-1)x${\;}^{\frac{1}{a-2}}$为幂函数,则a2-a-1=1且a≠2,⇒a=-1,故正确;
对于③,若扇形圆心角的弧度数为2,且扇形弧所对的弦长也是2,则扇形的半径为$\frac{1}{sin1}$,这个扇形的面积为$\frac{1}{2}×2×\frac{1}{si{n}^{2}1}$=$\frac{1}{si{n}^{2}1}$,故正确;
对于④,设函数f(x)=lg|x|-sinx的零点个数就是y=lg|x|与 y=sinx的交点,如图所示,故正确;

故答案为:②③④

点评 本题考查了命题真假的判定,涉及到了大量的函数知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x$-\frac{1}{2}$.
(1)求f(x)的最小值,并写出取得最小值时的自变量x的集合.
(2)设△ABC的内角A,B,C所对的边分别为a,b,c,且c=$\sqrt{3}$,f(C)=0,若sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设抛物线E:y2=2px(p>0)上的点M(x0,4)到焦点F的距离|MF|=$\frac{5}{4}$x0
(Ⅰ)求抛物线E的方程;
(Ⅱ)如图,直线l:y=k(x+2)与抛物线E交于A,B两点,点A关于x轴的对称点是C,求证:直线BC恒过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数$f(x)=cos2xcosθ-sin2xcos({\frac{π}{2}-θ})({|θ|<\frac{π}{2}})$在$({-\frac{3π}{8},-\frac{π}{6}})$上单调递增,则$f({\frac{π}{16}})$的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题“若x>2,则x>1”的否命题是(  )
A.若x<2,则x<1B.若x≤2,则x≤1C.若x≤1,则x≤2D.若x<1,则x<2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{a•{2}^{x}+b+1}{{2}^{x}+1}$是定义域在R上的奇函数,且f(2)=$\frac{6}{5}$.
(1)求实数a、b的值;
(2)判断函数f(x)的单调性,并用定义证明;
(3)解不等式:f(log${\;}_{\frac{1}{2}}$(2x-2)]+f[log2(1-$\frac{1}{2}$x)]≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图是一个正方体被切掉部分后所得几何体的三视图,则该几何体的体积为(  )
A.$\frac{4}{3}$B.$\frac{8}{3}$C.$\frac{{8\sqrt{2}}}{3}$D.$\frac{{4\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.将函数f(x)=cos2ωx的图象向右平移$\frac{3π}{4ω}$个单位,得到函数y=g(x)的图象,若y=g(x)在$[-\frac{π}{4},\frac{π}{6}]$上为减函数,则正实数ω的最大值为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某化工厂拟建一个下部为圆柱,上部为半球的容器(如图,圆柱高为h,半径为r,不计厚度,单位:米),按计划容积为72π立方米,且h≥2r,假设其建造费用仅与表面积有关(圆柱底部不计),已知圆柱部分每平方米的费用为2千元,半球部分每平方米4千元,设该容器的建造费用为y千元.
(Ⅰ)求y关于r的函数关系,并求其定义域;
(Ⅱ)求建造费用最小时的r.

查看答案和解析>>

同步练习册答案