精英家教网 > 高中数学 > 题目详情
18.若三点A($\frac{1}{4}$,$\frac{1}{4}$),B(a,0),C(0,b) (ab≠0)共线,则$\frac{1}{a}$+$\frac{1}{b}$的值等于4.

分析 题目转化为A($\frac{1}{4}$,$\frac{1}{4}$)在直线BC:$\frac{x}{a}$+$\frac{y}{b}$=1上,代值变形可得答案.

解答 解:∵三点A($\frac{1}{4}$,$\frac{1}{4}$),B(a,0),C(0,b)共线,
∴A($\frac{1}{4}$,$\frac{1}{4}$)在直线BC:$\frac{x}{a}$+$\frac{y}{b}$=1上,
代值可得$\frac{1}{a}$+$\frac{1}{b}$=4,
故答案为:4.

点评 本题考查三点共线,涉及直线的截距式方程,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=4x3+x-8,用二分法求方程4x3+x-8=0在x∈(1,3)内近似解的过程中,通过计算得:f(2)>0,f(1.5)>0,则方程的解落在区间(  )
A.(1,1.5)B.(1.5,2)C.(2,2.5)D.(2.5,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线y2=2px(p>0)上点T(3,t)到焦点F的距离为4.
(1)求t,p的值;
(2)设A,B是抛物线上分别位于x轴两侧的两个动点,且$\overrightarrow{OA}•\overrightarrow{OB}=5$(其中O为坐标原点).求证:直线AB过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.给出下列命题:
(1)函数$f(x)=\root{3}{{{x^4}-{x^3}}}$和$g(x)=x•\root{3}{x-1}$是同一个函数;
(2)若函数$f(x)={log_{\frac{1}{2}}}({x^2}-4x+3)$,则函数f(x)的单调递减区间是[2,+∞);
(3)对于函数f(x),x∈R,“y=|f(x)|的图象关于y轴对称”“是y=f(x)是奇函数”的必要不充分条件;
(4)已知函数f(x)=a|log2x|+1(a≠0),定义函数$F(x)=\left\{{\begin{array}{l}{f(x),x>0}\\{f(-x),x<0}\end{array}}\right.$,则函数F(x)是偶函数且当a>0时,函数y=F(x)-2有四个零点.
其中正确命题的个数有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列函数中,既是偶函数又是区间(0,+∞)上的增函数的有②④.(填写所有符合条件的序号)
①y=x3②y=|x|+1    ③y=${x}^{\frac{3}{2}}$   ④$y=\left\{\begin{array}{l}{lnx(x>0)}\\{ln(-x)(x<0)}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列说法错误的是(  )
A.如果一条直线的两点在一个平面内,那么这条直线在这个平面内
B.如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补
C.两条相交直线可以确定一个平面,两条平行直线可以确定一个平面
D.底面是正三角形的三棱锥是正三棱锥

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=loga(x+1)-loga(1-x),(a>0且a≠1).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性,并说明理由;
(3)设$a=\frac{1}{3}$,解不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用单调性定义证明函数f(x)=$\frac{1}{x-1}$在区间(1,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一个几何体的侧面都是等边三角形,则这个几何体可能是正四面体(答案不唯一)..

查看答案和解析>>

同步练习册答案