【题目】假设要考察某公司生产的流感疫苗的剂量是否达标,现从500支疫苗中抽取50支进行检验,利用随机数表法抽取样本时,先将500支疫苗按进行编号,如果从随机数表第7行第8列的数开始向右读,请写出第3支疫苗的编号________.(下面摘取了随机数表第7行至第9行)
第7行:84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50
25 83 92 12 06 76
第8行:63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58
07 44 39 52 38 79
第9行:33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13
42 99 66 02 79 54
科目:高中数学 来源: 题型:
【题目】随着互联网的快速发展,基于互联网的共享单车应运而生,某市场研究人员为了了解共享单车运营公司的经营状况,对该公司最近六个月的市场占有率进行了统计,并绘制了相应的折线图:
(1)由折线图可以看出,可用线性回归模型拟合月度市场占有率与月份代码之间的关系,求关于的线性回归方程,并
预测公司2017年4月的市场占有率;
(2)为进一步扩大市场,公司拟再采购一批单车,现有采购成本分别为元/辆和1200元/辆的、两款车型可供选择,按规定每辆单车最
多使用4年,但由于多种原因(如骑行频率等)会导致单车使用寿命各不相同,考虑到公司运营的经济效益,该公司决定先对这两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命的频数表如右表:经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率,如果你是公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?
参考公式:回归直线方程为,其中, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在梯形中, , . ,且平面, ,点为上任意一点.
(1)求证: ;
(2)点在线段上运动(包括两端点),若平面与平面所成的锐二面角为60°,试确定点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为,.
(1)求椭圆的方程;
(2)设直线与椭圆交于,两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若一个四位数的各位数字相加和为,则称该数为“完美四位数”,如数字“”.试问用数字组成的无重复数字且大于的“完美四位数”有( )个
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的方程为().
(1)若直线l在两坐标轴上的截距相等,求直线l的方程;
(2)若直线l与x正半轴、射线()分别交于P,Q两点,当a为何值时,的面积最小?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右顶点分别为,左焦点为,点为椭圆上任一点,若直线与的斜率之积为,且椭圆经过点.
(1)求椭圆的方程;
(2)若交直线于两点,过左焦点作以为直径的圆的切线.问切线长是否为定值,若是,请求出定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间的参赛者中,利用分层抽样的方法随机抽取人参加学校座谈交流,那么从得分在区间与各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的人中,选出人参加全市座谈交流,设表示得分在区间中参加全市座谈交流的人数,求的分布列及数学期望E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元。
(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,)的函数解析式;
(Ⅱ)该商场记录了去年夏天(共10周)空调器需求量n(单位:台),整理得下表:
周需求量n | 18 | 19 | 20 | 21 | 22 |
频数 | 1 | 2 | 3 | 3 | 1 |
以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,X表示当周的利润(单位:元),求X的分布列及数学期望。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com