精英家教网 > 高中数学 > 题目详情

【题目】请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,EFAB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm2

1)若广告商要求包装盒侧面积Scm)最大,试问x应取何值?

2)若广告商要求包装盒容积Vcm)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值。

【答案】1x=15cm 2

【解析】

试题(1)先设包装盒的高为,底面边长为,写出的关系式,并注明的取值范围,再利用侧面积公式表示出包装盒侧面积关于的函数解析式,最后求出何时它取得最大值即可;

2)利用体积公式表示出包装盒容积关于的函数解析式,利用导数知识求出何时它取得的最大值即可.

设包装盒的高为,底面边长为

由已知得

1

时,取得最大值

2)根据题意有

得,()

;当

时取得极大值,也是最大值,此时包装盒的高与底面边长的比值为

即包装盒的高与底面边长的比值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在底面是菱形的四棱锥P-ABCD中,PA⊥平面ABCD,∠ABC=60°PA=AB=2,点EF分别为BCPD的中点,设直线PC与平面AEF交于点Q

1)已知平面PAB平面PCD=l,求证:ABl

2)求直线AQ与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】fx)是定义域为R的偶函数,且fx+3)=fx-1),若当x∈[-2,0]时,fx)=2-x,记c=f(32),则abc的大小关系为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C的左、右顶点为AB,右焦点为F.过点A且斜率为k)的直线交椭圆C于另一点P.

1)求椭圆C的离心率;

2)若,求的值;

3)设直线l:,延长AP交直线l于点Q,线段BQ的中点为E,求证:点B关于直线EF的对称点在直线PF上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个玩具盘由一个直径为2米的半圆O和一个矩形ABCD构成,米,如图所示.小球从A点出发以5 V的速度沿半圆O轨道滚到某点E处后,经弹射器以6 V的速度沿与点E切线垂直的方向弹射到落袋区BC内,落点记为F.设弧度,小球从AF所需时间为T

1)试将T表示为的函数,并写出定义域;

2)当满足什么条件时,时间T最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合.

(1),求实数的值;

(2),求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某文体局为了解“跑团”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期间“跑团”每月跑步的平均里程(单位:公里)的数据,绘制了下面的折线图.根据折线图,下列结论正确的是( )

A. 月跑步平均里程的中位数为6月份对应的里程数

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在8、9月

D. 1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,且过点,椭圆的右顶点为.

(Ⅰ)求椭圆的的标准方程;

(Ⅱ)已知过点的直线交椭圆两点,且线段的中点为,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)当a0时,求fx)的极值;

2)当a0时,讨论fx)的单调性;

3)若对任意的a∈2, 3),x1, x2∈[1, 3],恒有(mln3a2ln3|fx1)-fx2|成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案