精英家教网 > 高中数学 > 题目详情
,b,c是空间三条不同的直线,是空间两个不同的平面,则下列命题不成立的是(    )
A.当时,若,则
B.当,且内的射影时,若b⊥c,则⊥b
C.当时,若b⊥,则
D.当时,若c∥,则b∥c
D

试题分析:A、其逆命题是:当c⊥α时,或α∥β,则c⊥β,由面面平行的性质定理知正确.
B、其逆命题是:当b?α,若α⊥β,则b⊥β,也可能平行,相交.不正确.
C、其逆命题是当b?α,且c是a在α内的射影时,若a⊥b,则b⊥c,由三垂线定理知正确.
D、其逆命题是当b?α,且c?α时,若b∥c,则c∥α,由线面平行的判定定理知正确.故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,长方体中,,G是上的动点。
(l)求证:平面ADG
(2)判断与平面ADG的位置关系,并给出证明;
(3)若G是的中点,求二面角G-AD-C的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是矩形,是棱的中点.

(1)求证:平面
(2)求证:平面
(3)在棱上是否存在一点,使得平面平面?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱ABC—A1B1C1中,AA1⊥面ABC,AC⊥BC,E、F分别在线段上,B1E=3EC1,AC=BC=CC1=4.

(1)求证:BC⊥AC1
(2)试探究:在AC上是否存在点F,满足EF//平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=,CE=EF=1.

(1)求证:AF∥平面BDE;
(2)求证:CF⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图①,E、F分别是直角三角形ABC边AB和AC的中点,∠B=90°,沿EF将三角形ABC折成如图②所示的锐二面角A1EFB,若M为线段A1C的中点.求证:

(1)直线FM∥平面A1EB;
(2)平面A1FC⊥平面A1BC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

垂直于同一条直线的两条直线一定
A.平行B.相交C.异面D.以上都有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知不重合的直线m、l和平面,且.给出下列命题:
①若,则
②若,则
③若,则
④若,则
其中正确命题的个数是(   )
A.1B.2C.3 D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知P是正方体ABCDA1B1C1D1棱DD1上任意一点,则在正方体的12条棱中,与平面ABP平行的直线是____________.

查看答案和解析>>

同步练习册答案