【题目】如图,在四棱锥中,底面,底面是直角梯形,.
(1)在上确定一点,使得平面,并求的值;
(2)在(1)条件下,求平面与平面所成锐二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】已知,函数.
(1)当时,解不等式;
(2)若关于的方程的解集中恰有一个元素,求的取值范围;
(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是数列的前项和,且满足,等差数列的前项和为,且, .
(Ⅰ)求数列与的通项公式;
(Ⅱ)若数列的通项公式为,问是否存在互不相等的正整数, , 使得, , 成等差数列,且 , , 成等比数列?若存在,求出, , ;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市有三所高校,其学生会学习部有“干事”人数分别为,现采用分层抽样的方法从这些“干事”中抽取名进行“大学生学习部活动现状”调查.
(1)求应从这三所高校中分别抽取的“干事”人数;
(2)若从抽取的名干事中随机选两名干事,求选出的名干事来自同一所高校的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当函数在点处的切线方程为,求函数的解析式;
(2)在(1)的条件下,若是函数的零点,且,求的值;
(3)当时,函数有两个零点,且,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学高一女生共有450人,为了了解高一女生的身高情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:
组别 | 频数 | 频率 |
145.5~149.5 | 8 | 0.16 |
149.5~153.5 | 6 | 0.12 |
153.5~157.5 | 14 | 0.28 |
157.5~161.5 | 10 | 0.20 |
161.5~165.5 | 8 | 0.16 |
165.5~169.5 | ||
合计 |
(1)求出表中字母所对应的数值;
(2)在给出的直角坐标系中画出频率分布直方图;
(3)估计该校高一女生身高在149.5~165.5范围内有多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕的成本为50元,然后以每个100元的价格出售,如果当天卖不完,剩下的蛋糕作垃圾处理.现需决策此蛋糕店每天应该制作几个生日蛋糕,为此搜集并整理了100天生日蛋糕的日需求量(单位:个),得到如图所示的柱状图,以100天记录的各需求量的频率作为每天各需求量发生的概率.
(1)若蛋糕店一天制作17个生日蛋糕,
①求当天的利润(单位:元)关于当天需求量(单位:个,)的函数解析式;
②在当天的利润不低于750元的条件下,求当天需求量不低于18个的概率.
(2)若蛋糕店计划一天制作16个或17个生日蛋糕,请你以蛋糕店一天利润的期望值为决定依据,判断应该制作16个是17个?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线上有一个动点,过点作直线垂直于轴,动点在上,且满足(为坐标原点),记点的轨迹为.
(I)求曲线的方程;
(II)若直线是曲线的一条切线,当点到直线的距离最短时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(A)已知平行四边形中, , , 为的中点, .
(1)求的长;
(2)设, 为线段、上的动点,且,求的最小值.
(B)已知平行四边形中, , , 为的中点, .
(1)求的长;
(2)设为线段上的动点(不包含端点),求的最小值,以及此时点的位置.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com