精英家教网 > 高中数学 > 题目详情

【题目】已知两个正方形ABCDCDEF有一条公共边CD,且BCF是等边三角形,则异面直线ACDF所成角的余弦值为(

A.B.C.D.

【答案】B

【解析】

CD的中点MCF的中点N,连接MN,可得MN//DF.延长BCP,使CPBC,连接MPNP.异面直线ACDF所成角为∠NMP,△NMP中,利用余弦定理即可得出.

CD的中点MCF的中点N,连接MN,延长BCP,使CPBC,连接MPNP,如图,

MN//DF,由可得 MP//AC

AB2,则MP=MN

BCF是等边三角形,NC=PC=1

由余弦定理可得:

异面直线ACDF所成角为∠NMP(或其补角),

cosNMP

异面直线ACDF所成角的余弦值为.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx=2lnx+1

1)若fx≤2x+c,求c的取值范围;

2)设a>0时,讨论函数gx=的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民收入也逐年增加.为了更好的制定2019年关于加快提升农民年收入力争早日脱贫的工作计划,该地扶贫办统计了201850位农民的年收入并制成如下频率分布直方图:

附:参考数据与公式 ,若 ,则① ;② ;③ .

1)根据频率分布直方图估计50位农民的年平均收入(单位:千元)(同一组数据用该组数据区间的中点值表示);

2)由频率分布直方图可以认为该贫困地区农民年收入 X 服从正态分布 ,其中近似为年平均收入 近似为样本方差 ,经计算得:,利用该正态分布,求:

i)在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?

ii)为了调研精准扶贫,不落一人的政策要求落实情况,扶贫办随机走访了1000位农民.若每个农民的年收入相互独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《数书九章》中有天池盆测雨题,大概意思如下:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为28寸,盆底直径为12寸,盆深18.若盆中积水深9寸,则平均降雨量是(注:①平均降雨量等于盆中积水体积除以盆口面积;②1尺等于10寸;③台体的体积)(

A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知斜率为1的直线交抛物线)于两点,且弦中点的纵坐标为2.

1)求抛物线的标准方程;

2)记点,过点作两条直线分别交抛物线不同于点)两点,且的平分线与轴垂直,求证:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年寒假期间,某高中决定深入调查本校学生寒假期间在家学习情况,并将依据调查结果对相应学生提出针对性学习建议.现从本校高一、高二、高三三个年级中分别随机选取304575人,然后再从这些学生中抽取10人,进行学情调查.

1)若采用分层抽样抽取10人,分别求高一、高二、高三应抽取的人数.

2)若被抽取的10人中,有6人每天学时超过7小时,有4人每天学时不足4小时,现从这10人中,再随机抽取4人做进一步调查.

i)记事件A被抽取的4人中至多有1人学时不足4小时,求事件A发生的概率;

ii)用ξ表示被抽取的4人中学时不足4小时的人数,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知离心率为的椭圆的左顶点为,左焦点为,及点,且成等比数列.

1)求椭圆的方程;

2)斜率不为的动直线过点且与椭圆相交于两点,记,线段上的点满足,试求为坐标原点)面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定下列四个命题,其中真命题是(

A.垂直于同一直线的两条直线相互平行

B.若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行

C.垂直于同一平面的两个平面相互平行

D.若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一台仪器每启动一次都随机地出现一个位的二进制数,其中的各位数字中,出现的概率为,出现的概率为.若启动一次出现的数字为,则称这次试验成功.若成功一次得分,失败一次得分,则次这样的重复试验的总得分的数学期望和方差分别为(

A.B.C.D.

查看答案和解析>>

同步练习册答案