精英家教网 > 高中数学 > 题目详情
15.设函数f(x)=ax2+bx+c(a>b>c)的图象经过点A(m1,f(m1))和点B(m2,f(m2)),f(1)=0,若a2+(f(m1)+f(m2)•a+f(m1)•f(m2)=0,则(  )
A.b≥0B.b<0C.3a+c≤0D.3a-c<0

分析 分别判断出a>0,c<0,根据b2-4a(a+c)=b(b+4a)=b(3a-c)≥0,求出3a-c>0,从而判断出b≥0.

解答 解:∵函数f(x)=ax2+bx+c(a>b>c),满足f(1)=0,
∴a+b+c=0.
若a≤0,∵a>b>c∴b<0,c<0,
则有a+b+c<0,这与a+b+c=0矛盾,∴a>0成立.
若c≥0,则有b>0,a>0,此时a+b+c>0,这与a+b+c=0矛盾,
∴c<0成立.
∵a2+[f(m1)+f(m2)]•a+f(m1)•f(m2)=0
∴[a+f(m1)]•[a+f(m2)]=0,∴m1,m2是方程f(x)=-a的两根
∴△=b2-4a(a+c)=b(b+4a)=b(3a-c)≥0
而a>0,c<0∴3a-c>0,
∴b≥0.
故选:A.

点评 本题考查了二次函数的性质,考查转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.过A(0,1),B(3,5)两点的直线的斜率是(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.$-\frac{4}{3}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一梯形的直观图是如图是欧式的等腰梯形,且直观图OA′B′C′的面积为2,则原梯形的面积为(  )
A.2B.2$\sqrt{2}$C.4D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某学校对高二年级期中考试数学成绩进行分析,随机抽取了分数在[100,150]的1000名学生的成绩,并根据这1000名学生的成绩画出频率分布直方图(如图所示),则成绩在[120,130)内的学生共有300人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某工厂打算建造如图所示的圆柱形容器(不计厚度,长度单位:米),按照设计要求,该容器的底面半径为r,高为h,体积为16π立方米,且h≥2r.已知圆柱的侧面部分每平方米建造费用为3千元,圆柱的上、下底面部分每平方米建造费用为a千元,假设该容器的建造费用仅与其表面积有关,该容器的建造总费用为y千元.
(1)求y关于r的函数表达式,并求出函数的定义域;
(2)问r为多少时,该容器建造总费用最小?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f′(x)为函数f(x)=$\frac{1}{3}a{x^3}+(3-a){x^2}$-7x+5(a>0)的导函数,当x∈[-2,2]时,|f′(x)|≤7恒成立,则f(x)=x3-7x+5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若tanα<0,则(  )
A.sinα<0B.cosα<0C.sinαcosα<0D.sinα-cosα<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数φ(x)=a2x-ax(a>0,a≠1).
(1)求函数φ(x)在[-2,2]上的最大值;
(2)当a=$\sqrt{2}$时,φ(x)≤t2-2mt+2对所有的x∈[-2,2]及m∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若幂函数$f(x)={x^{{m^2}-m-2}}({m∈Z})$在(0,+∞)是单调减函数,则m的取值集合是{0,1}.

查看答案和解析>>

同步练习册答案