精英家教网 > 高中数学 > 题目详情
(2006•广州二模)长度为a(a>0)的线段AB的两个端点A、B分别在x轴和y轴上滑动,点P在线段AB上,且
AP
PB
(λ为常数且λ>0).
(Ⅰ)求点P的轨迹方程C;
(Ⅱ)当a=λ+1时,过点M(1,0)作两条互相垂直的直线l1和l2,l1和l2分别与曲线C相交于点N和Q(都异于点M),试问:△MNQ能不能是等腰三角形?若能,这样的三角形有几个;若不能,请说明理由.
分析:(I)欲求点P的轨迹方程,设点P(x,y),只须求出其坐标x,y的关系式即可,由题意知点P满足于
AP
PB
得到一个关系式,再结合线段AB的长度为a(a>0),化简即得点P的轨迹方程;
(Ⅱ)当a=1+λ时,曲线C的方程为x2+
y2
λ2
=1
.依题意,直线l1和l2均不可能与坐标轴平行,故不妨设直线l1:x=my+1(m>0),直线l2:x=-
1
m
y+1
,与曲线方程联立,可求|MN|,|MQ|,若△MNQ是等腰三角形,则|MN|=|MQ|,由此可得(m-1)[m2+(1-λ2)m+1]=0,即m=1或m2+(1-λ2)m+1=0.讨论方程m2+(1-λ2)m+1=0的根的情形,即可得到满足条件的三角形的个数.
解答:解:(Ⅰ)设P(x,y)、A(x0,0)、B(0,y0),则
AP
PB
x-x0=-λx
y=λ(y0-y)
x0=(1+λ)x
y0=
1+λ
λ
y

由此及|AB|=a⇒
x
2
0
+
y
2
0
=a2
[(1+λ)x]2+[(
1+λ
λ
)y]2=a2

x2+
y2
λ2
=(
a
1+λ
)2

(Ⅱ)当a=1+λ时,曲线C的方程为x2+
y2
λ2
=1

依题意,直线l1和l2均不可能与坐标轴平行,故不妨设直线l1:x=my+1(m>0),直线l2:x=-
1
m
y+1
,从而有
x=my+1
x2+
y2
λ2
=1
⇒(λ2m2+1)y2+2λ2my=0⇒|MN|=
1+m2
|a|
=
2λ2m
1+m2
λ2m2+1

同理,有|MQ|=
2λ2
1+m2
λ2+m2

若△MNQ是等腰三角形,则|MN|=|MQ|,由此可得(m-1)[m2+(1-λ2)m+1]=0,即m=1或m2+(1-λ2)m+1=0.
下面讨论方程m2+(1-λ2)m+1=0的根的情形(△=(λ2+1)(λ2-3)):
①若0<λ<
3
,则△<0,方程没有实根;
②若λ=
3
,则△=0,方程有两个相等的实根m=1;
③若λ>
3
,则△>0,方程有两个相异的正实根,且均不等于1(因为12+(1-λ2)•1+1=3-λ2≠0).
综上所述,△MNQ能是等腰三角形:当0<λ≤
3
时,这样的三角形有且仅有一个;当λ>
3
时,这样的三角形有且仅有三个.
点评:本题考查的重点是轨迹方程,考查分类讨论的数学思想,解题的关键是将直线方程与曲线方程联立,利用方程根的讨论,确定满足条件的三角形的个数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•广州二模)篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,则他罚球2次(每次罚球结果互不影响)的得分的数学期望是
1.4
1.4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•广州二模)4名男生和4名女生随机地排成一行,有且仅有两名男生排在一起的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•广州二模)某公司是一家专做产品A的国内外销售的企业,第一批产品A上市销售40天内全部售完.该公司对第一批产品A上市后的国内外市场销售情况进行了跟踪调查,调查结果如图中一、二、三所示,其中图一中的折线表示的是国外市场的日销售量与上市时间的关系;图二中的抛物线表示的是国内市场的日销售量与上市时间的关系;图三中的折线表示的是每件产品A的销售利润与上市时间的关系(国内外市场相同).
(1)分别写出国外市场的日销售量f(t)、国内市场的日销售量g(t)与第一批产品A上市时间t的关系式;
(2)第一批产品A上市后的哪几天,这家公司的日销售利润超过6300万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•广州二模)已知△ABC的三个内角A、B、C的对边分别为a、b、c,若a、b、c成等差数列,且2cos2B-8cosB+5=0,求角B的大小并判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•广州二模)设函数y=f(x)的反函数为y=f-1(x),若f(x)=2x,则f-1(
1
2
)
的值为(  )

查看答案和解析>>

同步练习册答案