精英家教网 > 高中数学 > 题目详情
设命题p:方程4x2+4(a-2)x+1=0无实数根; 命题q:函数y=ln(x2+ax+1)的值域是R.如果命题p或q为真命题,p且q为假命题,求实数a的取值范围.
【答案】分析:先分别求得p为真命题,q为真命题时,a的范围,再根据命题p或q为真命题,p且q为假命题,可得p和q有且只有一个是真命题,从而分p真q假,p假 q真,分别求得a的范围,最后求出它们的并集即可.
解答:解:若p为真命题,则△=16(a-2)2-16=16(a-1)(a-3)<0恒成立 …(2分)
解得1<a<3    …(3分)
若q为真命题,则△=a2-4≥0恒成立,…(5分)
解得a≤-2或a≥2  …(6分)
又由题意知命题p或q为真命题,p且q为假命题
∴p和q有且只有一个是真命题,
若p真q假,∴,∴a的范围为:1<a<2…(8分)
若p假 q真,∴,a的范围为:a≤-2或a≥3 …(10分)
综上所述:a∈(-∞,-2]∪(1,2)∪[3,+∞)…(12分)
点评:本题以命题为载体,考查复合命题的真假运用,解题的关键是根据命题p或q为真命题,p且q为假命题,可得p和q有且只有一个是真命题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设命题p:方程4x2+4(a-2)x+1=0无实数根; 命题q:函数y=ln(x2+ax+1)的值域是R.如果命题p或q为真命题,p且q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设命题p:方程4x2+4(a-2)x+1=0无实数根; 命题q:函数y=ln(x2+ax+1)的值域是R.如果命题p或q为真命题,p且q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设命题p:方程4x2+4(a-2)x+1=0无实数根; 命题q:函数y=ln(x2+ax+1)的值域是R.如果命题p或q为真命题,p且q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省宜春市高二(上)期末数学试卷(解析版) 题型:解答题

设命题p:方程4x2+4(a-2)x+1=0无实数根; 命题q:函数y=ln(x2+ax+1)的值域是R.如果命题p或q为真命题,p且q为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案