精英家教网 > 高中数学 > 题目详情
已知抛物线y=ax2+bx+c通过点(1,1),且在(2,-1)处的切线的斜率为1,求a,b,c的值.
分析:把点(1,1)和点(2,-1)代入函数,进而对函数进行求道把x=2代入导函数方程,最后联立方程组求得a,b和c.
解答:解:因为y=ax2+bx+c分别过点(1,1)和点(2,-1),
所以a+b+c=1,①
4a+2b+c=-1,②
又y′=2ax+b,
所以y′|x=2=4a+b=1,③
由①②③可得a=3,b=-11,c=9.
点评:本题主要考查了抛物线的简单性质,涉及了待定系数求方程,导函数等知识,同时考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y=ax2-1上存在关于直线x+y=0成轴对称的两点,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=ax2-1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=ax2(a∈R)的准线方程为y=-1,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=ax2+bx+c与直线y=-bx交于A、B两点,其中a>b>c,a+b+c=0,设线段AB在x轴上的射影为A1B1,则|A1B1|的取值范围是(  )
A、(
3
,   2
3
)
B、(
3
,   +∞)
C、(0,   
3
)
D、(2,   2
3
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知抛物线y=ax2的准线方程为y=-2,则实数a的值为
1
8
1
8

查看答案和解析>>

同步练习册答案