精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,且经过点P,过它的左、右焦点分别作直线l112.l1交椭圆于A.两点,l2交椭圆于C,D两点,

(1)求椭圆的标准方程.

(2)求四边形ACBD的面积S的取值范围.

【答案】(1);(2)

【解析】

1)由题得关于的方程组,解方程组即得椭圆的标准方程;2)当中有一条直线的斜率不存在,则另一条直线的斜率为0,求出此时四边形的面积;若的斜率都存在,设的斜率为,则的斜率为.求出,再利用基本不等式求S的取值范围.

(1)由,所以

将点P的坐标代入椭圆方程得

故所求椭圆方程为.

(2)当中有一条直线的斜率不存在,则另一条直线的斜率为0,

此时四边形的面积为

的斜率都存在,设的斜率为,则的斜率为

直线的方程为,设,联立

消去整理得,

同理得

所以

(当且仅当t=1时取到等号)

综上可知,四边形面积的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(元)试销l天,得到如表单价(元)与销量(册)数据:

单价(元)

18

19

20

21

22

销量(册)

61

56

50

48

45

(l)根据表中数据,请建立关于的回归直线方程:

(2)预计今后的销售中,销量(册)与单价(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCDABCD的棱长为a,连接ACADABBDBCCD,得到一个三棱锥.求:

(1)三棱锥ABCD的表面积与正方体表面积的比值;

(2)三棱锥ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x2+1gx)=4x+1,的定义域都是集合A,函数fx)和gx)的值域分别为ST

1)若A[12],求ST

2)若A[0m]ST,求实数m的值

3)若对于集合A的任意一个数x的值都有fx)=gx),求集合A

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)写出函数的最小正周期;

2)请在下面给定的坐标系上用五点法画出函数在区间的简图;

3)指出该函数的图象可由的图象经过怎样的平移和伸缩变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个人聚会,已知:

(1)每个人至少同其中个人互相认识

(2)对于其中任意个人,或者其中有2人相识或者余下的人中有2人相识证明:这个人中必有3人两两相识.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线的两支为(如图),正三角形PQR的三顶点位于此双曲线上。

(1)求证:P、Q、R不能都在双曲线的同一支上;

(2)P(-1,-1)上,Q、R上。求顶点Q、R的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数的图象与轴无交点,求的取值范围;

(2)若函数上存在零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数恰有一个零点,求实数的取值范围;

(2)设关于的方程的两个不等实根,求证:(其中为自然对数的底数).

查看答案和解析>>

同步练习册答案