精英家教网 > 高中数学 > 题目详情
有下列四个命题:①22 340能被3或5整除;②不存在x∈R,使得x2+x+1<0;③对任意的实数x,均有x+1>x;④方程x2-2x+3=0有两个不等的实根.其中假命题有__________(只填序号).

思路分析:本题主要考查了判断命题的真假,在②④中只需考虑它们的判别式.

答案:④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、已知两个不同的平面α、β和两条不重合的直线,m、n,有下列四个命题:①若m∥n,m⊥α,则n⊥α②若m⊥α,m⊥β,则α∥β;③若m⊥α,m∥n,n?β,则α⊥β;④若m∥α,α∩β=n,,则m∥n,其中不正确的命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列四个命题:
(1)一定存在直线l,使函数f(x)=lgx+lg
12
的图象与函数g(x)=lg(-x)+2的图象关于直线l对称;
(2)在复数范围内,a+bi=0?a=0,b=0
(3)已知数列an的前n项和为Sn=1-(-1)n,n∈N*,则数列an一定是等比数列;
(4)过抛物线y2=2px(p>0)上的任意一点M(x°,y°)的切线方程一定可以表示为y0y=p(x+x0).
则正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

1、在空间中,有下列四个命题:(1)垂直于同一条直线的两条直线平行;(2)垂直于同一个平面的两条直线平行;(3)垂直于同一条直线的两个平面平行;(4)垂直于同一个平面的两个平面平行;其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•邢台一模)已知有下列四个命题:
①函数f(x)=2x-x2在(-∞,0)是增函数;
②若f(x)在R上恒有f(x+2)•f(x)=1,则4为f(x)的一个周期;
③函数y=2cosx2+sin2x的最小值为
2
+1

④对任意实数a、b、x、y,都有ax+by≤
a2+b2
x2+y2

则以上命题正确的是
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列四个命题:
①函数f(x)=
|x|
|x-2|
是偶函数;
②函数y=
x-1
的值域为{y|y≥0};
③已知集合A={-1,3},B={x|ax-1=0,a∈R},若A∪B=B,则a的取值集合为{-1,3};
④集合A={非负实数},B={实数},对应法则f:“求平方根”,则f是A到B的映射;
你认为正确命题的序号为
②④
②④

查看答案和解析>>

同步练习册答案