【题目】已知的三个顶点落在半径为的球的表面上,三角形有一个角为且其对边长为3,球心到所在的平面的距离恰好等于半径的一半,点为球面上任意一点,则三棱锥的体积的最大值为( )
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,轴非负半轴为极轴且取相同的单位长度建立极坐标系.已知点轨迹的参数方程为(,为参数),点在曲线上.
(1)求点轨迹的普通方程和曲线的直角坐标方程;
(2)求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的三个顶点落在半径为的球的表面上,三角形有一个角为且其对边长为3,球心到所在的平面的距离恰好等于半径的一半,点为球面上任意一点,则三棱锥的体积的最大值为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若,则称为的“不动点”,若,则称为的“稳定点”,函数的“不动点”和“稳定点”的集合分别记为和,即,,那么,
(1)求函数的“稳定点”;
(2)求证:;
(3)若,且,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设单调函数的定义域为,值域为,如果单调函数使得函数的值域也是,则称函数是函数的一个“保值域函数”.已知定义域为的函数,函数与互为反函数,且是的一个“保值域函数”,是的一个“保值域函数”,则__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且, .
求证:(1)直线DE平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:实数满足不等式;
命题q:关于不等式对任意的恒成立.
(1)若命题为真命题,求实数的取值范围;
(2)若“”为假命题,“”为真命题,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com