【题目】已知函数f(x)=xlnx,g(x)=﹣x2+ax﹣2.
(1)若曲线f(x)=xlnx在x=1处的切线与函数g(x)=﹣x2+ax﹣2也相切,求实数a的值;
(2)求函数f(x)在上的最小值;
(3)证明:对任意的x∈(0,+∞),都有成立
【答案】(1)3或-1;(2)见解析;(2)见解析.
【解析】试题分析:(1)求出函数的导数,计算的值,求出切线方程,再利用判别式为零即可的结果;(2)求出函数的导数,通过讨论的范围,求出函数的单调区间,从而求出的最小值即可;(3)设,求出的导数, 求出的最大值,得到恒成立,从而证明结论即可.
试题解析:(1)f′(x)=lnx+x=lnx+1 ,
时, , ,
故 在 处的切线方程是: ,
联立,
消去y得: ,
由题意得: ,
解得: 或 ;
(2)由(1)得: ,
x∈(0,)时, , 递减,
x∈(,+∞)时, ,递增,
①0<t<t+≤,即0<t≤﹣时,
f(x)min=f(t+)=(t+)ln(t+),
②0<t<<t+,即﹣<t<时,
f(x)min=f()=﹣;
③≤t<t+,即 时, f(x)在递增,
;
综上,f(x)min=;
(3)证明:设m(x)=﹣,(x∈(0,+∞)),则m′(x)=,
时, ,递增,
时, , 递减,
可得m(x)max=m(1)=﹣,当且仅当 时取到,
由(2)得 ,( )的最小值是﹣,
当且仅当x=时取到,
因此 时,f(x)min≥﹣≥m(x)max恒成立,
又两次最值不能同时取到,
故对任意 ,都有成立.
【方法点晴】本题主要考查利用导数求曲线切线、利用导数研究函数的单调性以及不等式证明问题,属于难题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点 出的切线斜率(当曲线在处的切线与轴平行时,在 处导数不存在,切线方程为);(2)由点斜式求得切线方程.
科目:高中数学 来源: 题型:
【题目】如图所示,四边形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=
90°,BC AD,BE FA,G,H分别为FA,FD的中点.
(1)证明:四边形BCHG是平行四边形.
(2)C,D,F,E四点是否共面?为什么?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2016~2017·郑州高一检测)过点M(1,2)的直线l与圆C:(x-3)2+(y-4)2=25交于A,B两点,C为圆心,当∠ACB最小时,直线l的方程是 ( )
A. x-2y+3=0 B. 2x+y-4=0
C. x-y+1=0 D. x+y-3=0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在公差不为零的等差数列{an}中,已知a1=1,且a1,a2,a5依次成等比数列.数列{bn}满足bn+1=2bn-1,且b1=3.
(1)求{an},{bn}的通项公式;
(2)设数列的前n项和为Sn,试比较Sn与1-的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中:
①线性回归方程必过点;
②在回归方程中,当变量增加一个单位时, 平均增加5个单位;
③在回归分析中,相关指数为0.80的模型比相关指数为0.98的模型拟合的效果要好;
④在回归直线中,变量时,变量的值一定是-7.
其中假命题的个数是 ( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为了制定合理的节电方案,供电局对居民用电情况进行了调查,通过抽样,获得了某年200户居民每户的月均用电量(单位:度),将数据按照,分成9组,制成了如图所示的频率直方图.
(1)求直方图中的值并估计居民月均用电量的中位数;
(2)从样本里月均用电量不低于700度的用户中随机抽取4户,用表示月均用电量不低于800度的用户数,求随机变量的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立.
(1)分别求甲队以3:0,3:1,3:2获胜的概率;
(2)若比赛结果为3:0或3:1,则胜利方得3分、对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求甲队得分X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆和直线: ,椭圆的离心率,坐标原点到直线的距离为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知定点,若直线过点且与椭圆相交于两点,试判断是否存在直线,使以为直径的圆过点?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com