精英家教网 > 高中数学 > 题目详情

已知F是椭圆的左焦点,A是椭圆短轴上的一个顶点,椭圆的离心率为,点B在x轴上,AB⊥AF,A、B、F三点确定的圆C恰好与直线x+y+3=0相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)设O为椭圆的中心,是否存在过F点,斜率为k(k∈R,l≠0)且交椭圆于M、N两点的直线,当从O点引出射线经过MN的中点P,交椭圆于点Q时,有成立.如果存在,则求k的值;如果不存在,请说明理由.

练习册系列答案
相关习题

科目:高中数学 来源:天津月考题 题型:解答题

已知F是椭圆的左焦点,A是椭圆短轴上的一个顶点,椭圆的离心率为,点B在x轴上,AB⊥AF,A,B,F三点确定的圆C恰好与直线相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在过F作斜率为k(k≠0)的直线l交椭圆于M,N两点,P为线段MN的中点,设O为椭圆中心,射线OP交椭圆于点Q,若,若存在求k的值,若不存在则说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省部分重点中学高三(上)起点数学试卷(理科)(钟祥一中命题)(解析版) 题型:解答题

已知F是椭圆的左焦点,A是椭圆短轴上的一个顶点,椭圆的离心率为,点B在x轴上,AB⊥AF,A、B、F三点确定的圆C恰好与直线相切.
(1)求椭圆的方程;
(2)设O为椭圆的中心,过F点作直线交椭圆于M、N两点,在椭圆上是否存在点T,使得,如果存在,则求点T的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年天津一中高三(上)第三次月考数学试卷(文科)(解析版) 题型:解答题

已知F是椭圆的左焦点,A是椭圆短轴上的一个顶点,椭圆的离心率为,点B在x轴上,AB⊥AF,A,B,F三点确定的圆C恰好与直线相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在过F作斜率为k(k≠0)的直线l交椭圆于M,N两点,P为线段MN的中点,设O为椭圆中心,射线OP交椭圆于点Q,若,若存在求k的值,若不存在则说明理由.

查看答案和解析>>

科目:高中数学 来源:2012年江西省上饶市高考数学一模试卷(文科)(解析版) 题型:解答题

已知F是椭圆的左焦点,A是椭圆短轴上的一个顶点,椭圆的离心率为,点B在x轴上,AB⊥AF,A、B、F三点确定的圆C恰好与直线相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设O为椭圆的中心,是否存在过F点,斜率为k(k∈R,l≠0)且交椭圆于M、N两点的直线,当从O点引出射线经过MN的中点P,交椭圆于点Q时,有成立.如果存在,则求k的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案