精英家教网 > 高中数学 > 题目详情
6.若$cos(\frac{π}{2}-α)=\frac{1}{3}$,$\frac{π}{2}<α<π$,则sin2α=(  )
A.$-\frac{{2\sqrt{2}}}{9}$B.$-\frac{{2\sqrt{2}}}{3}$C.$-\frac{{4\sqrt{2}}}{9}$D.$-\frac{4}{9}$

分析 由已知利用诱导公式可求sinα,利用同角三角函数基本关系式可求cosα,进而利用二倍角的正弦函数公式即可计算得解.

解答 解:∵$cos(\frac{π}{2}-α)=\frac{1}{3}$,$\frac{π}{2}<α<π$,
∴sinα=$\frac{1}{3}$,cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{2\sqrt{2}}{3}$,
∴sin2α=2sinαcosα=2×$\frac{1}{3}×$(-$\frac{2\sqrt{2}}{3}$)=-$\frac{4\sqrt{2}}{9}$.
故选:C.

点评 本题主要考查了诱导公式,同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O为圆心的两个同心圆弧和延长后通过点AD的两条线段围成.设圆弧$\widehat{AB}$、$\widehat{CD}$所在圆的半径分别为f(x)、R米,圆心角为θ(弧度).
(1)若θ=$\frac{π}{3}$,r1=3,r2=6,求花坛的面积;
(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD的长度为多少时,花坛的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在等差数列{an}中,首项a1=1,数列{bn}满足bn=($\frac{1}{2}$)${\;}^{{a}_{n}}$,且b1b2b3=$\frac{1}{64}$.
(1)求数列{an}的通项公式;
(2)求数列{anbn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.从5名男同学,4名女同学中任选5人参加一次夏令营,其中男同学,女同学均不少于2人的概率是(  )
A.$\frac{13}{63}$B.$\frac{50}{63}$C.$\frac{43}{63}$D.$\frac{11}{63}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知电子发射管发射的电子是随机的从电子发射管射出的,当一束电子从电子发射管射出后随机的落在以2a为边长的正三角形屏幕的内切圆区域内,则电子落在该区域的概率是$\frac{\sqrt{3}}{9}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若函数f(x)=2sin($\frac{π}{3}$-2x)+1.
(1)求f(x)的单调递增区间;
(2)若方程f(x)+b=0在[$\frac{π}{2}$,π]上有解,求b的取值范围;
(3)将y=f(x)的图象向左平移$\frac{π}{6}$个单位后,再向下平移1个单位得到函数y=g(x)的图象.
①若y=g(ωx)的图象在(-2π,0)上单调递增,求ω的取值范围;
②若方程g(ωx)=2在(0,2π)上至少存在三个根,求ω的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.一个圆锥的高是10,侧面展开图是半圆,则该圆锥的全面积为100π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=|x|-$\sqrt{x+1}$的值域是[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|lnx|,设x1≠x2且f(x1)=f(x2).
(1)求$\frac{{{x_1}{x_2}-1}}{{({{x_1}-1})({{x_2}-1})}}$的值;
(2)若x1+x2+f(x1)+f(x2)>M对任意满足条件的x1,x2恒成立,求实数M的最大值.

查看答案和解析>>

同步练习册答案