精英家教网 > 高中数学 > 题目详情
已知双曲线=1(a>0,b>0)的半焦距为C,若b2-4ac<0,则它的离心率的取值范围是__________.

解析:化b2-4ac<0为c2-a2-4ac<0,从而e2-4e-1<0(注意到e满足e>1),解这个不等式得所求范围(1,2+).

答案:(1,2+).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线=1(a>0,b>0)的右焦点为F,右准线与一条渐近线交于点A,△OAF的面积为 (O为原点),则两条渐近线的夹角为(    )

A.30°             B.45°              C.60°              D.90°

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山西省晋中市昔阳中学高二(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

已知双曲线=1(a>0,b>0)的离心率为,右准线方程为
(Ⅰ)求双曲线C的方程;
(Ⅱ)已知直线x-y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省六安市寿县迎河中学高二(上)第三次月考数学试卷(理科)(解析版) 题型:解答题

已知双曲线=1(a>0,b>0)的离心率为,右准线方程为
(Ⅰ)求双曲线C的方程;
(Ⅱ)已知直线x-y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省南通市启东市汇龙中学高二(上)第二次学情调查数学试卷(解析版) 题型:解答题

已知双曲线=1(a>0,b>0)的离心率为,右准线方程为
(Ⅰ)求双曲线C的方程;
(Ⅱ)已知直线x-y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年贵州省册亨县民族中学高三(上)期末数学试卷(文科)(解析版) 题型:解答题

已知双曲线=1(a>0,b>0)的离心率为,右准线方程为
(Ⅰ)求双曲线C的方程;
(Ⅱ)已知直线x-y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.

查看答案和解析>>

同步练习册答案