精英家教网 > 高中数学 > 题目详情
下列函数中,最小值为4的函数是(  )
A.B.
C.D.
C

试题分析:根据题意,由于A.,当x>0时成立,对于 B.,等号取不到,不成立,对于C. 成立 对于 D.,只有x>1成立,故答案为C.
点评:主要是考查了函数的最值的运用,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

定义在R上的奇函数有最小正周期4,且时,
(1)求上的解析式;
(2)判断上的单调性,并给予证明;
(3)当为何值时,关于方程上有实数解?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数(k∈R),若函数有三个零点,则实数k的取值范围是(  )
A.k≤2B.-1<k<0
C.-2≤k<-1D.k≤-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,直线与函数的图像都相切,且与函数的图像的切点的横坐标为1.  
(1)求直线的方程及的值;
(2)若(其中的导函数),求函数的最大值;
(3)当时,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知实数,设函数,设分别为图象上任意的点,若线段长度的最小值为,则实数的值为(  )
A.B.2C.D.2或

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设命题:函数上为减函数, 命题的值域为,命题函数定义域为
(1)若命题为真命题,求的取值范围。
(2)若为真命题,为假命题,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数的定义域为,若存在非零实数使得对于任意,有,且,则称上的高调函数,如果定义域为的函数是奇函数,当时,,且上的高调函数,那么实数的取值范围是         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数表示中的较大值,表示中的较小值,记得最小值为得最小值为,则(      )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极值 .
(I)求实 数a和b.         (Ⅱ)求f(x)的单调区间

查看答案和解析>>

同步练习册答案