精英家教网 > 高中数学 > 题目详情
如图,四棱柱ABCD-A1B1C1D1的底面ABCD是平行四边形,且AA1⊥底面ABCD,AB=2,AA1=BC=4,∠ABC=60°,点E为BC中点,点F为B1C1中点.
(Ⅰ) 求证:平面A1ED⊥平面A1AEF;
(Ⅱ)求点F到平面A1ED的距离.
分析:(Ⅰ)依题意,易证DE⊥AE,从而可证DE⊥平面A1AEF,由面面垂直的判断定理即可证得结论;
(Ⅱ)利用三棱锥的轮换体积公式VF-A1ED=VD-A1FE即可求得点F到平面A1ED的距离.
解答:证明:(Ⅰ)依题意知,△ABE为等边三角形,所以AE=AB=2,
在等腰三角形ECD中,EC=CD=2,∠ECD=120°,
∴由余弦定理可知,DE=2
3

在△AED中,AD=4,AE=2,DE=2
3
,AD2=AE2+DE2
∴DE⊥AE;
又AA1⊥底面ABCD,
∴AA1⊥DE,又AA1∩AE=A,
∴DE⊥平面A1AEF,DE?平面A1ED,
∴平面A1ED⊥平面A1AEF;
(Ⅱ)设点F到平面A1ED的距离为h,则VF-A1ED=
1
3
S△A1ED•h=
1
3
×
1
2
DE•A1E•h=
1
3
×
1
2
×2
3
×2
5
•h;
VD-A1FE=
1
3
S△A1FE•DE=
1
3
×
1
2
EF•A1F•DE=
1
3
×
1
2
×4×2×2
3

VF-A1ED=VD-A1FE
1
3
×
1
2
×2
3
×2
5
•h=
1
3
×
1
2
×4×2×2
3

∴h=
4
5
=
4
5
5
点评:本题考查线面垂直的判定与平面与平面垂直的判定,考查点、线、面间的距离计算,考查推理与证明的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2.
(Ⅰ)求证:C1D∥平面ABB1A1
(Ⅱ)求直线BD1与平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D-A1C1-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,侧棱与底面边长均为2a,且∠A1AD=∠A1AB=60°,则侧棱AA1和截面B1D1DB的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱A1A=2,
(Ⅰ)证明:AC⊥A1B;
(Ⅱ)若棱AA1上存在一点P,使得
AP
PA1
,当二面角A-B1C1-P的大小为300时,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泉州模拟)如图,四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD.
(Ⅰ)从下列①②③三个条件中选择一个做为AC⊥BD1的充分条件,并给予证明;
①AB⊥BC,②AC⊥BD;③ABCD是平行四边形.
(Ⅱ)设四棱柱ABCD-A1B1C1D1的所有棱长都为1,且∠BAD为锐角,求平面BDD1与平面BC1D1所成锐二面角θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津)如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,
AA1=AB=2,E为棱AA1的中点.
(Ⅰ)证明B1C1⊥CE;
(Ⅱ)求二面角B1-CE-C1的正弦值.
(Ⅲ)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为
2
6
,求线段AM的长.

查看答案和解析>>

同步练习册答案