精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若函数处有极值,求的值;

(2)若对于任意的上单调递增,求的最小值.

【答案】(1) (2).

【解析】试题分析:(1)由 ,根据题意设有解得,进行检验舍去得所求b值;(2)由题意知对任意的都成立,所以对任意的都成立,因为,所以上为单调增函数或为常数函数,①当为常数函数时, ;②当为增函数时, ,即对任意都成立,求二次函数最大值即得解.

试题解析:

(1)由

于是,根据题意设有

解得

时,所以函数,所以函数有极值点;

时,所以函数,所以无极值点,

所以 .

(2)由题意知对任意的都成立,

所以对任意的都成立,

因为,所以上为单调增函数或为常数函数,

①当为常数函数时,

②当为增函数时,

对任意都成立,

,所以时, ,所以

所以的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆心在轴上且通过点的圆与直线相切.

(1)求圆的方程;

(2)已知直线经过点,并且被圆C截得的弦长为,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的两个焦点分别为 ,过作椭圆长轴的垂线交椭圆于点,若为等腰直角三角形,则椭圆的离心率是( )

A. B. C. D.

【答案】C

【解析】试题分析:解:设点Px轴上方,坐标为()为等腰直角三角形,|PF2|=|F1F2|,故选D.

考点:椭圆的简单性质

点评:本题主要考查了椭圆的简单性质.椭圆的离心率是高考中选择填空题常考的题目.应熟练掌握圆锥曲线中abce的关系

型】单选题
束】
8

【题目】”是“对任意的正数 ”的( )

A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于区间,若函数同时满足:①上是单调函数;②函数的值域是,则称区间为函数的“保值”区间.

(1)求函数的所有“保值”区间.

(2)函数是否存在“保值”区间?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中(为坐标原点),已知两点,且三角形的内切圆为圆,从圆外一点向圆引切线为切点。

(1)求圆的标准方程.

(2)已知点,且,试判断点是否总在某一定直线上,若是,求出直线的方程;若不是,请说明理由.

(3)已知点在圆上运动,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 底面分别是的中点, ,且.

(1)求证: 平面

(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;

若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某奶茶公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的奶茶共5 杯,其颜色完全相同,并且其中3杯为奶茶,另外2杯为奶茶,公司要求此员工一一品尝后,从5杯奶茶中选出2杯奶茶.若该员工2杯都选奶茶,则评为优秀;若2 杯选对1奶茶,则评为良好;否则评为及格.假设此人对两种奶茶没有鉴别能力.

(Ⅰ)求此人被评为优秀的概率;()求此人被评为良好及以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的首项,公差.且分别是等比数列的第2、3、4项

(1)求数列的通项公式;

(2)设数列满足的值(结果保留指数形式).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(改编)已知正数数列的前项和为,且满足;在数列中,

(1)求数列的通项公式;

(2)设,数列的前项和为. 若对任意,存在实数,使恒成立,求的最小值;

(3)记数列的前项和为,证明:.

查看答案和解析>>

同步练习册答案