精英家教网 > 高中数学 > 题目详情
已知三棱柱ABC-A1B1C1的三个侧面都是全等的正方形,则异面直线AB与B1C所成角的余弦值为(  )
A、
2
4
B、
3
4
C、
5
4
D、
3
4
考点:异面直线及其所成的角
专题:空间位置关系与距离
分析:首先确定异面直线所成的角的平面角,进一步利用余弦定理求解.
解答:
解:连结A1C,异面直线AB与B1C所成的角
即直线A1B1与B1C所成的角
设AB=1,三棱柱ABC-A1B1C1的三个侧面都是全等的正方形
所以A1C=
2
,A1B1=1,B1C=
2

在△A1B1C中,利用余弦定理:cos∠A1B1C=
A1B12+B1C2-A1C2
2A1B1B1C
=
2
4

故选:A
点评:本题考查知识要点:异面直线所成的角,余弦定理得应用及相关的运算问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC中sinA:sinB:sinC=5:
31
:6,则△ABC最大角与最小角的和是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x||x|<3},N={x|log2x>1},则M∩N=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程2x2-3x+2m=0有两个实根均在[-1,1]内,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x2-
3
2
x)emx
(Ⅰ)若函数f(x)在区间(1,+∞)上只有一个极值点,求实数m的取值范围.
(Ⅱ)若函数f(x)中m=1时,函数g(x)=kx+1(k≠0),且?x1∈[-
3
2
,2],?x2∈[2,3]使得f(x)≥g(x)成立.求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,真命题是(  )
A、?x∈R,2x>0
B、?x>1,lgx<0
C、?x∈R,(
1
2
x<0
D、?x∈R,log 
1
10
x<0

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x
1+x
-aln(1+x),g(x)=ln(1+x)-bx
(1)若函数f(x)在x=0处有极值,求函数f(x)的最大值;
(2)是否存在实数b,使得关于x的不等式g(x)<0在(0,+∞)上恒成立?若存在,求出b的取值范围;若不存在,说明理由;
(3)证明:不等式-1<
n
i=1
k
k2+1
-lnx
1
2
(n=1,2…)

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两超市同时开业,第一年的年销售额都为a万元,甲超市前n(n∈N+)年的总销售额为
a
2
(n2-n+2)万元;从第二年开始,乙超市第n年的销售额比前一年的销售额多(
2
3
n-1a万元.
(Ⅰ)设甲、乙两超市第n年的销售额分别为an,bn万元,求an,bn的表达式;
(Ⅱ)若在同一年中,某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购.若今年(2014年)为第一年,问:在今后若干年内,乙超市能否被甲超市收购?若能,请推算出在哪一年底被收购;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=axlnx(a≠0)
(1)若曲线y=f(x)在点P(1,f(1))处的切线与直线x-y+1=0垂直,求a及函数f(x)的最值;
(2)若m>0,n>0,a>0,证明:f(m)+f(n)≥f(m+n)-a(m+n)ln2.

查看答案和解析>>

同步练习册答案