精英家教网 > 高中数学 > 题目详情
14.下列框图中是流程图的是(  )
A.B.
C.D.

分析 流程线表示操作的先后次序,由流程图的概念即可得解.

解答 解:流程图是由一些图框和流程线组成的,其中流程线表示操作的先后次序.
故选:A.

点评 本题主要考查了流程图的概念的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设θ为第二象限角,若$tan({θ+\frac{π}{4}})=\frac{1}{3}$,则tanθ=-$\frac{1}{2}$;sinθ+cosθ=-$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设i为虚数单位,n为正整数.试用数学归纳法证明(cosx+isinx)n=cosnx+isinnx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an},{bn}满足a1=b1=6,a2=b2=4,且数列{an-$\frac{n^2}{2}$}(n∈N*)是等差数列,数列{bn-2}(n∈N*)是等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)是否存在k∈N+,使ak-bk∈(0,$\frac{1}{2}$),若存在,求出k,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x|x-a|+b(x∈R)
(Ⅰ)当0≤x≤a时,求函数f(x)的最大值;
(Ⅱ)当a=1,b=-1时,求不等式f(x)≥|x|的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在用反证法证明命题“已知a,b,c∈(0,2),求证a(2-b),b(2-c),c(2-a)不可能都大于1”时,反证假设时正确的是(  )
A.假设a(2-b),b(2-c),c(2-a)都小于1B.假设a(2-b),b(2-c),c(2-a)都大于1
C.假设a(2-b),b(2-c),c(2-a)都不大于1D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知F1,F2是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a,b>0)的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2为钝角三角形,则该双曲线的离心率e的取值范围是(  )
A.(1,+∞)B.$(\sqrt{2}+1,+∞)$C.$(1,\sqrt{2}+1)$D.$(1,\sqrt{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知从某飞船带回的某种植物种子每粒成功发芽的概率都为$\frac{1}{3}$,某植物研究所进行该种子的发芽试验,每次试验种一粒种子,每次试验结果相互独立.假定某次试验种子发芽则称该次试验是成功的,如果种子没有发芽,则称该次试验是失败的.若该研究所共进行四次试验,设ξ表示四次试验结束时试验成功的次数与失败的次数之差的绝对值.
(1)求ξ=2的概率;
(2)求ξ≥2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知F1、F2为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过点F2作直线l交双曲线C的右支于A、B两点,若△F1AB是以∠A为直角的等腰直角三角形,则双曲线C的离心率为$\sqrt{5-2\sqrt{2}}$.

查看答案和解析>>

同步练习册答案