精英家教网 > 高中数学 > 题目详情
已知函数f(x)和g(x)的图象关于y轴对称,且f(x)=x2+
1
2
x
.则不等式g(x)≥f(x)-|x-4|的解集为(  )
分析:根据题意可求得g(x)的表达式,从而得到|x-4|≥x,通过对x分类讨论即可解得答案.
解答:解:∵f(x)=x2+
1
2
x,函数f(x)和g(x)的图象关于y轴对称,
∴g(x)=f(-x)=(-x)2-
1
2
x=x2-
1
2
x,
又g(x)≥f(x)-|x-4|,
∴x2-
1
2
x≥x2+
1
2
x-|x-4|,
∴|x-4|≥x,
∴当x≥4时,-4≥0,这不可能;
当x<4时,4-x≥x,
∴x≤2.
综上所述,不等式g(x)≥f(x)-|x-4|的解集为{x|x≤2}.
故选C.
点评:本题考查函数的图象与图象变化,考查绝对值不等式的解法,着重考查图象关于y轴对称的函数关系的理解与应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的定义域都是实数集R,f(x)是奇函数,g(x)是偶函数.且当x<0时,f′(x)g(x)+f(x)g′(x)>0,g(-2)=0,则不等式f(x)g(x)<0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.
(Ⅰ) 求函数g(x)的解析式;
(Ⅱ)解不等式g(x)≥f(x)-|x-1|;
(Ⅲ)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.
(1)求函数g(x)的解析式;
(2)λ≠-1,若h(x)=g(x)-λf(x)+1在x∈[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于原点对称,且g(x)=-x2+2x.
(1)求函数f(x)的解析式;
(2)解不等式f(x)≤g(x)+|x-1|;
(3)若函数h(x)=f(x)+λ•g(x)+1在区间[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案