精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=ex+2lnx,其导函数为f′(x),则f′(1)=e+2.

分析 求出函数的导数,然后求解函数值即可.

解答 解:函数f(x)=ex+2lnx,其导函数为f′(x)=ex+$\frac{2}{x}$,
f′(1)=e+2.
故答案为:e+2.

点评 本题考查函数的导数的应用,导函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知数列{an}和{bn}满足an=log2bn(n∈N*),Sn为等差数列{an}的前n项和,且a1=1,b4=4b2
(1)求an与bn
(2)设cn=$\frac{1}{{S}_{n}}+\frac{1}{{b}_{n}}$,记数列{cn}的前n项和为Tn,求证:$\frac{3}{2}$≤Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.双曲线${x^2}-\frac{y^2}{m}=1$的离心率大于$\sqrt{2}$,则(  )
A.$m>\frac{1}{2}$B.m≥1C.m>1D.m>2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.数列{an}满足a1=1,且对于任意的n∈N*都满足an+1=$\frac{{a}_{n}}{3{a}_{n}+1}$,则数列{anan+1}的前n项和为 (  )
A.$\frac{1}{3n+1}$B.$\frac{n}{3n+1}$C.$\frac{1}{3n-2}$D.$\frac{n}{3n-2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=xlnx,g(x)=(-x2+ax-3)ex(a∈R)
(1)当a=2时,求y=g(x)在x=1处的切线方程;
(2)求f(x)在[t,t+1](t>0)上的最小值;
(3)h(x)=g(x)-2exf(x),若h(x)在[$\frac{1}{e}$,e]有两个不同的零点,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.过椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F1(-$\sqrt{3}$,0),而且过点C($\sqrt{3}$,$\frac{1}{2}$)
(1)求椭圆E的方程:
(2)过点C的直线l与椭圆E的另一交点为D,与y轴的交点为B.过原点O且平行于l的直线与椭圆的一个交点为H.若CD•CB=2OH2,求直线l的方程.
(3)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线PA1,PA2分别交x轴于点N,M,若直线0T与过点M,N的圆G相切,切点为T.线段0T的长是否为定值,若是并求出该定值,不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(2x-1)=x2+x,则f(5)的值为(  )
A.30B.12C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题中,正确是(  )
A.两个向量相等,则它们的起点相同,终点也相同
B.若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$
C.四边形ABCD中,一定有$\overrightarrow{AB}$=$\overrightarrow{DC}$
D.若$\overrightarrow{m}$=$\overrightarrow{n}$,$\overrightarrow{n}$=$\overrightarrow{p}$,则$\overrightarrow{m}$=$\overrightarrow{p}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在直角坐标系xOy中,设Q(x1,y1)是圆x2+y2=2上的一个动点,点P(${{x}_{1}}^{2}$-${{y}_{1}}^{2}$,x1y1)的轨迹方程为C.
(1)以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,直线l的方程为ρcos(θ+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,求曲线C与直线l交点的直角坐标;
(2)若直线l1经过点M(2,1),且与曲线C交于A,B两点,已知倾斜角为α,求点M到A,B两点的距离之积的最小值.

查看答案和解析>>

同步练习册答案