精英家教网 > 高中数学 > 题目详情

已知:a、b、c的模分别为1、2、3,则|a+b+c|的最大值为________,此时向量a、b、c________.

答案:6,方向相同
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面上三个向量
a
b
c
的模均为1,它们相互之间的夹角均为120°.
(1)求证:(
a
-
b
)⊥
c

(2)若|k
a
+
b
+
c
|>1 (k∈R),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面上三个向量
a
b
c
的模均为1,它们相互之间的夹角为120°,
(1)求证:(
b
-
c
)⊥
a

(2)若|t
a
+
b
+
c
|>1
(t∈R),求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都二模)在△ABC中,已知内角A,B,C的对边分别为a,b,c,且满足
2
asin(B+
π
4
)=c
(I)求角A的大小.,
(II)若△ABC为锐角三角形,求sinBsinC的取值范围.

查看答案和解析>>

科目:高中数学 来源:2014届浙江省高一下学期期中数学试卷(解析版) 题型:解答题

已知点A、B、C的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),

α∈(,).

(1)若||=||,求角α的值;

(2)若·=-1,求的值.

【解析】第一问中利用向量的模相等,可以得到角α的值。

第二问中,·=-1,则化简可知结论为

解:因为点A、B、C的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),

α∈(,).||=|| 所以α=.

(2)因为·=-1,.

 

查看答案和解析>>

同步练习册答案