精英家教网 > 高中数学 > 题目详情

【题目】已知向量=(2sinx,-1),,函数fx)=

(1)求函数fx)的对称中心;

(2)设ABC的内角ABC所对的边为abc,且a2=bc,求fA)的取值范围.

【答案】(1)(+,-1)(kZ)(2)(-2,1]

【解析】

(1)由已知得fxsin2x﹣cos2x﹣1=2sin(2x)﹣1,又2xkπ,得x,得fx)的对称中心为(,﹣1)(k∈Z);

(2)由a2bc和余弦定理得0<A,结合正弦函数的图象可得结果.

(1)fx2sinxcosx﹣2cos2x

sin2x﹣cos2x﹣1

=2sin(2x)﹣1,

∵2xkπ,∴x

fx)的对称中心为(,﹣1)(k∈Z);

(2)cosA

y=cosx在[0,π]上是减函数,∴0<A

fA)=2sin(2A)﹣1,

∵0<A,∴2A

sin(2A)≤1,∴﹣2<2sin(2A)﹣1≤1

fA)的取值范围为(﹣2,1].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知线段AB的端点B的坐标为(3,0),端点A在圆上运动;

(1)求线段AB中点M的轨迹方程;

(2)过点C(1,1)的直线m与M的轨迹交于G、H两点,求以弦GH为直径的圆的面积最小值及此时直线m的方程.

(3)若点C(1,1),且P在M轨迹上运动,求的取值范围.(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥两两垂直,是三棱锥外接球面上一动点,则到平面的距离的最大值是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的长轴长为6,且椭圆与圆 的公共弦长为.

(1)求椭圆的方程.

(2)过点作斜率为的直线与椭圆交于两点 ,试判断在轴上是否存在点,使得为以为底边的等腰三角形.若存在,求出点的横坐标的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过平面直角坐标系中的点P(4-3a)(aR)作圆x2+y2=1的两条切线PAPB,切点分别为AB,则数量积的最小值为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断正确的是(

A.

B.命题都是偶数,则是偶数的逆否命题是不是偶数,则都不是偶数

C.为假命题,则且非是真命题

D.已知是实数,关于的不等式的解集是空集,必有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且在轴上的顶点分别为.

1)求椭圆的方程;

2)若直线轴交于点,点为直线上异于点的任一点,直线分别与椭圆交于点,试问直线能否通过椭圆的焦点?若能,求出的值,若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知AB丄平面BCD,M、N分别是AC、AD的中点,BC 丄 CD.

(1)求证:MN//平面BCD;

(2)若AB=1,BC=,求直线AC与平面BCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线,是三个不同的平面,给出下列四个命题:

①若,则

②若,则

③若,则

④若,则

其中正确命题的序号是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

同步练习册答案