精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=nlnx-mx+m,m,n∈R
(1)证明:曲线y=f(x)必经过过定点(1,0);
(2)若曲线y=f(x)与x轴相切,证明 m=n.

分析 (1)证明f(1)=0即可;
(2)由题可知,f(x)与x轴相切,即(1,0)点为其切点,即可证明.

解答 证明:(1)f(x)=nlnx-(x-1)m
令x=1,得f(1)=nln1-(1-1)m=0
由n,m∈R,则f(x)恒过(1,0)点
(2)由(1)可知,f(x)过(1,0)点,恰好是x轴上的.
由f'(x)=$\frac{x}{n}$-m可知,当f'(x)=0时,即切线与x轴平行时,
可得$\frac{x}{n}$-m=0,x=$\frac{n}{m}$.
由题可知,f(x)与x轴相切,即(1,0)点为其切点.
则令x=1,则$\frac{n}{m}$=1,可得m=n.

点评 本题考查导数知识的运用,考查导数的几何意义,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|-3≤x≤5},B={x|x≥a},且A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x-eax(a>0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在[$\frac{1}{a}$,$\frac{2}{a}$]上的最大值;
(Ⅲ)若存在x1,x2(x1<x2),使得f(x1)=f(x2)=0,证明:$\frac{{x}_{1}}{{x}_{2}}$<ae.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在半径是13cm的球面上有A、B、C三点,AB=10cm,BC=6cm,CA=8cm,求球心到平面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l:x-my-1=0(m≠0)经过抛物线y2=2px(p≠0)的焦点F,且与抛物线交于A、B两点.
(1)求实数p的值,并用m表示|AB|;
(2)设线段AB的垂直平分线与x轴交于点N,求证:|AB|:|FN|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等比数列{an}中,已知a6-a5=2a4,则公比q等于(  )
A.1B.1或-2C.-1或2D.-1或-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知在△ABC中,角A、B、C对应的边分别为a、b、c,若asin($\frac{π}{2}$+C),bsin($\frac{π}{2}$-B),csin($\frac{π}{2}$-A)依次成等差数列.
(1)求角B;
(2)如果△ABC的外接圆的面积为π,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\left\{\begin{array}{l}{sinα+sinβ=\frac{1}{2}}\\{y=co{s}^{2}α-sinβ}\end{array}\right.$,求值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知直角边长为1的等腰直角三角形在x轴上作翻滚运动,某时刻A与坐标原点重合,AB=2,且AB在x轴上,设顶点A(x,y)的轨迹方程为y=f(x),关于函数y=f(x)的说法正确的是①③④
①f(x)的值域为[0,$\sqrt{2}$];
②f(x)是周期函数且周期为1+$\sqrt{2}$;
③f(x)的一个减区间是[$\sqrt{2}$,$\sqrt{2}$+2];
④${∫}_{0}^{\sqrt{2}+1}$f(x)dx=$\frac{3}{4}$π+$\frac{1}{2}$;
⑤f(1)<f($\sqrt{2}$+1)<f(100+51$\sqrt{2}$)

查看答案和解析>>

同步练习册答案