精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥平面.

1)求证:平面平面

2)当时,求直线和平面所成角的正弦值.

【答案】1)见解析(2

【解析】

1)要证明面面垂直,需证明线面垂直,由条件可证明,即证明平面

2)由条件可知,所以以C为原点,直线分别为x轴、y轴、z轴建立空间直角坐标系,先求平面的法向量,利用公式求解.

解:(1)在中,由余弦定理,知

代入上式,计算得,故

所以.

平面平面

所以

所以平面

平面

故平面平面.

2)由(1)知,

.

平面,所以两两垂直,以C为原点,

直线分别为x轴、y轴、z轴建立空间直角坐标系:

依题意,

假设平面的一个法向量为

,解得.

,设直线和平面所成的角为

和平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若不等式恒成立,求的最小值;

2)证明:.

3)设方程的实根为.若存在,使得,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形为矩形,平面平面中点,.

1)求证:

2)若与平面所成的角为,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,为等腰直角三角形,为等边三角形,其中OBC中点,且.

(1)求证:平面平面PBC;

(2)若平面EBC,其中EAP上的点,求CE与平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线经过点,过点作直线两点,分别交直线两点.

1)求的方程和焦点坐标;

2)设,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=丨x+a+1丨+丨x-丨,(a>0)。

(1)证明:f(x)≥5;

(2)若f(1)<6成立,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生男生女都一样,女儿也是传后人.由于某些地区仍然存在封建传统思想,头胎的男女情况可能会影响生二孩的意愿,现随机抽取某地200户家庭进行调查统计.200户家庭中,头胎为女孩的频率为0.5,生二孩的频率为0.525,其中头胎生女孩且生二孩的家庭数为60.

1)完成下列列联表,并判断能否有95%的把握认为是否生二孩与头胎的男女情况有关;

生二孩

不生二孩

合计

头胎为女孩

60

头胎为男孩

合计

200

2)在抽取的200户家庭的样本中,按照分层抽样的方法在生二孩的家庭中抽取了7户,进一步了解情况,在抽取的7户中再随机抽取4户,求抽到的头胎是女孩的家庭户数的分布列及数学期望.

附:

0.15

0.05

0.01

0.001

2.072

3.841

6.635

10.828

(其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与平面满足,则下列命题中正确的是(

A.的充分不必要条件

B.的充要条件

C.,则的必要不充分条件

D.,则的既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从抛物线上任意一点Px轴作垂线段,垂足为Q,点M是线段上的一点,且满足

(1)求点M的轨迹C的方程;

(2)设直线与轨迹c交于两点,TC上异于的任意一点,直线分别与直线交于两点,以为直径的圆是否过x轴上的定点?若过定点,求出符合条件的定点坐标;若不过定点,请说明理由.

查看答案和解析>>

同步练习册答案