精英家教网 > 高中数学 > 题目详情

【题目】将函数 的图像向左平移 个单位,再向上平移1个单位,得到g(x)的图像.若g(x1)g(x2)=9,且x1 , x2∈[﹣2π,2π],则2x1﹣x2的最大值为(
A.
B.
C.
D.

【答案】A
【解析】解:函数 的图像向左平移 个单位,可得y= 的图像, 再向上平移1个单位,得到g(x)= +1的图像.
若g(x1)g(x2)=9,且x1 , x2∈[﹣2π,2π],
则g(x1)=g(x2)=3,


由x1 , x2∈[﹣2π,2π],得:x1 , x2∈{﹣ ,﹣ },
当x1= ,x2=﹣ 时,2x1﹣x2取最大值
故选:A
【考点精析】本题主要考查了函数的最值及其几何意义的相关知识点,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB=BC=BB1 , AB1∩A1B=E,D为AC上的点,B1C∥平面A1BD.
(1)求证:BD⊥平面A1ACC1
(2)若AB=1,且ACAD=1,求二面角B﹣A1D﹣B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知cosα,sinα是函数f(x)=x2﹣tx+t(t∈R)的两个零点,则sin2α=(
A.2﹣2
B.2 ﹣2
C. ﹣1
D.1﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某市统考的学生数学考试卷中随机抽查100份数学试卷作为样本,分别统计出这些试卷总分,由总分得到如下的频率分布直方图.
(1)求这100份数学试卷的样本平均分 和样本方差s2(同一组中的数据用该组区间的中点值作代表)
(2)由直方图可以认为,这批学生的数学总分Z服从正态分布N(μ,σ2),其中μ近似为样本平均数 ,σ2近似为样本方差s2 . ①利用该正态分布,求P(81<z<119);
②记X表示2400名学生的数学总分位于区间(81,119)的人数,利用①的结果,求EX(用样本的分布区估计总体的分布).
附: ≈19, ≈18,若Z=~N(μ,2),则P(μ﹣σ2),则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正三棱柱ABC﹣A1B1C1的底面积为 ,侧面积为36;
(1)求正三棱柱ABC﹣A1B1C1的体积;
(2)求异面直线A1C与AB所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,C为锐角且asinA=bsinBsinC,
(1)求C的大小;
(2)求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差d≠0,且a1 , a3 , a13成等比数列,若a1=1,Sn是数列{an}前n项的和,则 (n∈N+)的最小值为(
A.4
B.3
C.2 ﹣2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.
(1)求证:B1C1∥平面A1DE;
(2)求证:平面A1DE⊥平面ACC1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线x2 =1的左右焦点分别为F1、F2 , 过点F2的直线交双曲线右支于A,B两点,若△ABF1是以A为直角顶点的等腰三角形,则△AF1F2的面积为

查看答案和解析>>

同步练习册答案