A. | $\frac{3n}{10(10-3n)}$ | B. | $\frac{n}{10(10-3n)}$ | C. | $\frac{n}{10-3n}$ | D. | $\frac{n}{10(13-3n)}$ |
分析 设等差数列{an}的公差为d,依题意知S4为其前项和中的最大值,进一步可求得公差d=-3,得到数列{an}的通项公式,再利用裂项法即可求得数列{bn}的前项和Tn.
解答 解:设等差数列{an}的公差为d,∵等差数列{an}的前项和为Sn,且Sn≤S4,
∴S4为其前项和中的最大值,
∴$\left\{\begin{array}{l}{{a}_{4}≥0}\\{{a}_{5}<0}\end{array}\right.$,
又a1=10,
∴$\left\{\begin{array}{l}{10+3d≥0}\\{10+4d<0}\end{array}\right.$,解得:-$\frac{10}{3}$≤d<-$\frac{5}{2}$,又a2为整数,
∴公差d=a2-a1为整数,
∴d=-3.
∴an=10+(n-1)×(-3)=13-3n.
又${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{(13-3n)(10-3n)}$=$\frac{1}{3}$($\frac{1}{10-3n}$-$\frac{1}{13-3n}$),
∴Tn=b1+b2+…+bn=$\frac{1}{3}$($\frac{1}{7}$-$\frac{1}{10}$+$\frac{1}{4}$-$\frac{1}{7}$+…+$\frac{1}{10-3n}$-$\frac{1}{13-3n}$)=$\frac{1}{3}$($\frac{1}{10-3n}$-$\frac{1}{10}$)=$\frac{n}{10(10-3n)}$.
故选:B.
点评 本题考查数列的求和,分析得到S4为其前项和中的最大值,并求得公差d=-3是关键,考查裂项法求和,属于难题.
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{6}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | d<0 | B. | S19<0 | ||
C. | 当n=9时Sn取最小值 | D. | S10>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com