精英家教网 > 高中数学 > 题目详情
8.等差数列{an}的前项和为Sn,已知a1=10,a2为整数,且Sn≤S4,设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,则数列{bn}的前项和Tn为(  )
A.$\frac{3n}{10(10-3n)}$B.$\frac{n}{10(10-3n)}$C.$\frac{n}{10-3n}$D.$\frac{n}{10(13-3n)}$

分析 设等差数列{an}的公差为d,依题意知S4为其前项和中的最大值,进一步可求得公差d=-3,得到数列{an}的通项公式,再利用裂项法即可求得数列{bn}的前项和Tn

解答 解:设等差数列{an}的公差为d,∵等差数列{an}的前项和为Sn,且Sn≤S4
∴S4为其前项和中的最大值,
∴$\left\{\begin{array}{l}{{a}_{4}≥0}\\{{a}_{5}<0}\end{array}\right.$,
又a1=10,
∴$\left\{\begin{array}{l}{10+3d≥0}\\{10+4d<0}\end{array}\right.$,解得:-$\frac{10}{3}$≤d<-$\frac{5}{2}$,又a2为整数,
∴公差d=a2-a1为整数,
∴d=-3.
∴an=10+(n-1)×(-3)=13-3n.
又${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{(13-3n)(10-3n)}$=$\frac{1}{3}$($\frac{1}{10-3n}$-$\frac{1}{13-3n}$),
∴Tn=b1+b2+…+bn=$\frac{1}{3}$($\frac{1}{7}$-$\frac{1}{10}$+$\frac{1}{4}$-$\frac{1}{7}$+…+$\frac{1}{10-3n}$-$\frac{1}{13-3n}$)=$\frac{1}{3}$($\frac{1}{10-3n}$-$\frac{1}{10}$)=$\frac{n}{10(10-3n)}$.
故选:B.

点评 本题考查数列的求和,分析得到S4为其前项和中的最大值,并求得公差d=-3是关键,考查裂项法求和,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.△ABC的内角A,B,C的对边分别为a,b,c.若c=$\sqrt{2}$,b=$\sqrt{6}$,B=120°,则a等于(  )
A.$\sqrt{6}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.写出由下列函数复合而成的函数:
(1)y=cosu,u=1+x2
(2)y=lnu,u=lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知公差大于零的等差数列{an}的前n项和为Sn,且满足a3•a4=117,a2+a5=22.
(1)求数列{an}的通项公式;
(2)求数列{an+1}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.二次函数f(x)=x2+2ax+b在区间(-∞,4)上是减函数,你能确定的是(  )
A.a≥2B.b≥2C.a≤-4D.b≤-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若k∈R,则“k>1”是方程“$\frac{x^2}{k-1}+\frac{y^2}{k+1}=1$”表示椭圆的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知等差数列{an}的前n项和为Sn,公差为d,若a1<0,S12=S6,下列说法正确的是(  )
A.d<0B.S19<0
C.当n=9时Sn取最小值D.S10>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知实数x,y满足方程(x-2)2+(y-2)2=1.
(1)求$\frac{2x+y-1}{x}$的取值范围;
(2)求|x+y+l|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知M是直线l:x=-1上的动点,点F的坐标是(1,0),过M的直线l′与l垂直,并且l′与线段MF的垂直平分线相交于点N
(Ⅰ)求点N的轨迹C的方程
(Ⅱ)设曲线C上的动点A关于x轴的对称点为A′,点P的坐标为(2,0),直线AP与曲线C的另一个交点为B(B与A′不重合),直线P′H⊥A′B,垂足为H,是否存在一个定点Q,使得|QH|为定值?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案