精英家教网 > 高中数学 > 题目详情
 选修1:几何证明选讲
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:
(1)l是⊙O的切线;
(2)PB平分∠ABD.
精英家教网
证明:(1)连接OP,因为AC⊥l,BD⊥l,
所以ACBD.
又OA=OB,PC=PD,
所以OPBD,从而OP⊥l.
因为P在⊙O上,所以l是⊙O的切线.
(2)连接AP,因为l是⊙O的切线,
所以∠BPD=∠BAP.
又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,
所以∠PBA=∠PBD,即PB平分∠ABD.

精英家教网
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

21、 选修1:几何证明选讲
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:
(1)l是⊙O的切线;
(2)PB平分∠ABD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

选修1:几何证明选讲
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:
(1)l是⊙O的切线;
(2)PB平分∠ABD.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年江苏省海安高级中学、南京外国语学校、金陵中学高三第三次调研数学试卷(解析版) 题型:填空题

 选修1:几何证明选讲
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:
(1)l是⊙O的切线;
(2)PB平分∠ABD.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省南通市高考数学最后押题卷(解析版) 题型:解答题

 选修1:几何证明选讲
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:
(1)l是⊙O的切线;
(2)PB平分∠ABD.

查看答案和解析>>

同步练习册答案