精英家教网 > 高中数学 > 题目详情
9.在△ABC中,已知A>B>C,且A=2C,b=4,a+c=8,求a,c的长.

分析 根据正弦定理得$\frac{b}{sinB}=\frac{a+c}{sinA+sinC}$,结合已经条件算出sin2C+sinC=2sin3C,利用两角和的正弦公式和二倍角公式化简整理,得8cos2C-2cosC-3=0,解出锐角C的余弦值为$\frac{3}{4}$.最后利用余弦定理建立关系式,结合a+c=8即可解出边a、c的长.

解答 解:根据正弦定理$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$,得$\frac{b}{sinB}=\frac{a+c}{sinA+sinC}$,
∵b=4,a+c=8,∠A=2∠C,
∴$\frac{4}{sin(π-3C)}$=$\frac{8}{sin2C+sinC}$,可得sin2C+sinC=2sin(π-3C)=2sin3C,
∵sin2C=2sinCcosC,sin3C=sin(2C+C)=sin2CcosC+cos2CsinC=2sinCcos2C+sinC(2cos2C-1),
∴2sinCcosC+sinC=2[2sinCcos2C+sinC(2cos2C-1)],
结合sinC>0,化简整理得:8cos2C-2cosC-3=0,
解之得cosC=$\frac{3}{4}$或cosC=-$\frac{1}{2}$,
∵∠A>∠B>∠C,得C为锐角,
∴cosC=-$\frac{1}{2}$不符合题意,舍去,
根据余弦定理,得cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{3}{4}$,
∴$\frac{{a}^{2}+{4}^{2}-(8-a)^{2}}{2×a×4}$=$\frac{3}{4}$,解之得a=$\frac{24}{5}$,c=8-a=$\frac{16}{5}$,
综上,a、c的长分别为$\frac{24}{5}$、$\frac{16}{5}$.

点评 本题给出△ABC的最大角等于最小角的2倍,最大边与最小边之和等于第三边的2倍,求边a、c的长.着重考查了三角恒等变换和利用正余弦定理解三角形的知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年安徽六安一中高二上理周末检测三数学试卷(解析版) 题型:解答题

在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市(如图)的东偏南方向300km的海面处,并以20km/h的速度向西偏北方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大,问几小时后该城市开始受到台风的侵袭?受到台风侵袭的时间有多少小时?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知△ABC的三边长分别为5,6,7,点O是△ABC三个角分线的交点,若BC=7,则△OBC的面积为$\frac{7\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=CD=2,M是线段AE上的动点.
(1)试确定点M的位置,使AC∥平面DMF,并说明理由;
(2)在(1)的条件下,求点A到平面DMF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知{an}满足:对于任意正整数n都有,a1+a2+a+3…+an=$\frac{1}{2}$(an2+n),且an-1+an≠1(n≥2)
(1)若数列的前n项和Sn,证明:a13+a23+a33+…+an3=Sn2
(2)设数列{bn}满足b1=$\frac{1}{2}$,bn+1=$\frac{1}{{a}_{2015}}$bn2+bn,求证:bn<1(n∈N*,n≤2015)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若(1-2x)5=a0+a1x+a2x2+…+a5x5,那么|a0|+|a1|+|a2|+…+|a5|=243,a1+a3+a5=-122.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算:(x+2)(x+1)2(x-1)3(x-2)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合A={x|2<x<5},B={x|x<b},若A⊆B,则b的取值范围是(  )
A.b≤2B.b≤5C.b≥2D.b≥5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知直线x=m与函数f(x)=sinx,函数g(x)=sin($\frac{π}{2}$-x)的图象分别相交于M、N两点,则|MN|的最大值为(  )
A.1B.$\sqrt{2}-1$C.$\sqrt{2}$D.2

查看答案和解析>>

同步练习册答案