精英家教网 > 高中数学 > 题目详情
20.一个长方体的表面积为11,所有棱的长度之和为24,则长方体的一条对角线长为(  )
A.5B.$\sqrt{14}$C.3$\sqrt{3}$D.4

分析 利用长方体的表面积、对角线等基本性质列出方程组,由此能求出长方体的一条对角线长.

解答 解:设三边长分别为x,y,z,
由题意得$\left\{\begin{array}{l}{2xy+2yz+2xz=11}\\{4(x+y+z)=24}\end{array}\right.$,
∴x2+y2+z2=(x+y+z)2-2xy-2yz-2xz=36-11=25,
∴对角线长为$\sqrt{{x}^{2}+{y}^{2}+{z}^{2}}$=5.
故选:A.

点评 本题考查长方体对角线长的求法,是基础题,解题时要认真审题,注意长方体的表面积、对角线等基本性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,x∈R.
(1)求函数f(x)的表达式;
(2)求x∈[-π,0]时,f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知A(3,4,-1),B(-1,-4,3),C(-2,1,2),且M为AB中点,则向量$\overrightarrow{CM}$的坐标为(  )
A.(3,-1,1)B.(3,1,-1)C.(3,-1,-1)D.(3,1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在棱长为a的正四面体A-BCD中,M是棱AB的中点,则CM与底面BCD所成的角的正弦值是$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在三棱锥P-ABC中,点D为AB上一点,点E为AC的中点,PA=PB=AB,BC=$\sqrt{2}$PE,∠PED=45°,DE∥平面PBC.
(1)求证:平面PAB⊥平面ABC;
(2)若∠ABC=90°,AB=2,求点D到平面PBE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C的参数方程是$\left\{\begin{array}{l}x=1+cosα\\ y=2+sinα\end{array}\right.(α$为参数).
(Ⅰ)以直角坐标系的原点0为极点,x轴的正半轴为极轴建立极坐标系,写出圆C的极坐标方程;
(Ⅱ)若直线l的极坐标方程为$θ=\frac{π}{4}({ρ∈R})$,设直线l和圆C的交点为M,N,求△CMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.$y={(\frac{1}{2})^{|x|}}$的函数图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线4x-3y-12=0在x轴上的截距为a,在y轴上的截距为b,则(  )
A.a=3,b=-4B.a=-3,b=4C.a=3,b=4D.a=-3,b=4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆C:x2+y2-4x-14y+45=0及点Q(-2,3),
(Ⅰ)若点P(m,m+1)在圆C上,求PQ的斜率;
(Ⅱ)若点M是圆C上任意一点,求|MQ|的最大值、最小值;
(Ⅲ)若N(a,b)满足关系:a2+b2-4a-14b+45=0,求出t=$\frac{b-3}{a+2}$的最大值.

查看答案和解析>>

同步练习册答案