精英家教网 > 高中数学 > 题目详情
已知非零向量
a
b
,满足|
a
+
b
|=|
a
-
b
|,则(  )
A、
a
=
b
B、
a
=-
b
C、
a
b
D、
a
b
考点:平面向量数量积的运算
专题:平面向量及应用
分析:利用向量的运算性质、向量垂直与数量积的关系即可得出.
解答: 解:∵非零向量
a
b
,满足|
a
+
b
|=|
a
-
b
|,
a
2
+
b
2
+2
a
b
=
a
2
+
b
2
-2
a
b

化为
a
b
=0.
a
b

故选:D.
点评:本题考查了向量的运算性质、向量垂直与数量积的关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(x-2)5的展开式中第3项的二项式系数是(  )
A、10B、-10
C、40D、-40

查看答案和解析>>

科目:高中数学 来源: 题型:

有一位同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计得到了一天所卖的热饮杯数(y)与当天气温(x℃)之间的线性关系,其回归方程为
y
=-2.35x+147.77.如果某天气温为2℃时,则该小卖部大约能卖出热饮的杯数是(  )
A、140B、143
C、152D、156

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2x-1+
x+1
的值域为(  )
A、[-4,+∞)
B、[-
25
8
,+∞}
C、[-1,+∞)
D、[-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

直线方程3x+2y-6=0的斜率为k,在y轴上的截距为b,则有(  )
A、k=-
2
3
,b=3
B、k=-
3
2
,b=3
C、k=-
2
3
,b=-3
D、k=-
3
2
,b=-3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右两个焦点,且椭圆C上的点A(1,
3
2
)到两个焦点F1、F2的距离之和为4.
(1)求椭圆C的方程,并写出其焦点F1、F2的坐标;
(2)过椭圆C的右焦点F2任作一条与两坐标轴都不垂直的弦AB,若点M在x轴上,且直线MA与直线MB关于x轴对称,求点M的坐标;
(3)根据(2)中的结论特征,猜想出关于所有椭圆
x2
a2
+
y2
b2
=1(a>b>0)的一个一般结论(不需证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+
4
x
+1,x>0
-x-
4
x
+1,x<0

(1)判断函数f(x)的奇偶性;
(2)试用函数单调性定义说明函数f(x)在区间(0,2]和[2,+∞)上的增减性;
(3)若x1,x2满足:1≤|x1|≤4,1≤|x2|≤4,试证明:|f(x1)-f(x2)|≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

《国务院关于修改<中华人民共和国个人所得税法实施条例>的决定》已于2008年3月1日起施行,个人所得税税率表如下:
级数全月应纳税所得额税率
1不超过500元的部分5%
2超过500至2 000元的部分10%
3超过2 000元至5 000无的部分15%
9超过100 000元的部分45%
注:本表所示全月应纳税所得额为每月收入额减去2 000元后的余额.
(1)若某人2008年4月份的收入额为4 200元,求该人本月应纳税所得额和应纳的税费;
(2)设个人的月收入额为x元,应纳的税费为y元.当0<x≤3 600时,试写出y关于x的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程:x+
x
x2-1
=2
2

查看答案和解析>>

同步练习册答案