分析 构造函数不等式(x-1)(x-2)(x-3)≥2(x-3)是证明本式的关键,再通过累加即可.
解答 证明:构造函数f(x)=(x-1)(x-2)(x-3),x∈(0,+∞),
作差,f(x)-2(x-3)=(x-1)(x-2)(x-3)-2(x-3)
=(x-3)[(x-1)(x-2)-2]
=(x-3)(x2-3x)
=x(x-3)2≥0在x∈(0,+∞)上恒成立,
所以,f(x)≥2(x-3),x∈(0,+∞),
又∵ai(i=1,2,…,10)为正实数,
∴f(ai)≥2(ai-3)=2ai-6,i=1,2,…,10,
累加得:$\sum_{i=1}^{10}f({a}_{i})$≥2(a1+a2+a3+…+a10)-60=2$\sum_{i=1}^{10}{a}_{i}$-60=0,
故,$\sum_{i=1}^{10}({a}_{i}-1)({a}_{i}-2)({a}_{i}-3)$≥0.
点评 本题主要考查了通过构造函数证明不等式,以及作差比较法,累加求和法,具有的一定的技巧性,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(-1)<f(0)<f(2) | B. | f(2)<f(0)<f(-1) | C. | f(0)<f(-1)<f(2) | D. | f(2)<f(-1)<f(0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{20}$ | B. | $\frac{1}{12}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com