精英家教网 > 高中数学 > 题目详情
10.若角α满足sinα+2cosα=0,则sin2α的值等于-$\frac{4}{5}$.

分析 根据sinα+2cosα=0求出tanα的值,再把sin2α化为切函数,从而求出它的值.

解答 解:∵sinα+2cosα=0,
∴tanα=-2,
∴sin2α=2sinαcosα
=$\frac{2sinαcosα}{{sin}^{2}α{+cos}^{2}α}$
=$\frac{2tanα}{{tan}^{2}α+1}$
=$\frac{2×(-2)}{{(-2)}^{2}+1}$
=-$\frac{4}{5}$.
故答案为:-$\frac{4}{5}$.

点评 本题考查了同角的三角函数关系与二倍角公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=\frac{1}{3}{x^3}-e{x^2}+mx+1({m∈R})$,$g(x)=\frac{lnx}{x}$.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)对任意的两个正实数x1,x2,若g(x1)<f'(x2)恒成立(f'(x)表示f(x)的导数),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若复数z满足z•i=1+i(i是虚数单位),则z的共轭复数是1+i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列说法正确的是(  )
(1)已知等比数列{an},则“数列{an}单调递增”是“数列{an}的公比q>1”的充分不必要条件;
(2)二项式${({2x+\frac{1}{{\sqrt{x}}}})^5}$的展开式按一定次序排列,则无理项互不相邻的概率是$\frac{1}{5}$;
(3)已知$S=\int_0^{\frac{1}{2}}{\sqrt{\frac{1}{4}-{x^2}}}dx$,则$S=\frac{π}{16}$;
(4)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为40.
A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(x+1)lnx-ax+2.
(1)当a=1时,求在x=1处的切线方程;
(2)若函数f(x)在定义域上具有单调性,求实数a的取值范围;
(3)求证:$\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+…+\frac{1}{2n+1}<\frac{1}{2}ln(n+1)$,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=ex-ax2+1,曲线y=f(x)在x=1处的切线方程为y=bx+2.
(1)求a,b的值;
(2)当x>0时,求证:f(x)≥(e-2)x+2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是同一平面内的三个向量,其中$\overrightarrow{a}$=(2,1)
(1)若|$\overrightarrow{c}$|=2$\sqrt{5}$,且$\overrightarrow{c}$∥$\overrightarrow{a}$,求$\overrightarrow{c}$的坐标;
(2)若|$\overrightarrow{b}$|=$\frac{\sqrt{5}}{2}$,且$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$垂直,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=(x-2)ex+a.(a∈R)
(I)试确定函数f(x)的零点个数;
(II)设x1,x2是函数f(x)的两个零点,证明:x1+x2<2.
参考公式:(et-x)'=-et-x(t为常数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=xex的最小值是-$\frac{1}{e}$.

查看答案和解析>>

同步练习册答案