精英家教网 > 高中数学 > 题目详情

【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.

(1)求直方图的的值;

(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.

(3)估计居民月用水量的中位数.

【答案】(1) (2)36000(3)

【解析】试题分析:本题主要考查频率分布直方图、频率、频数的计算等基础知识,考查学生的分析问题、解决问题的能力. 第()问,由高×组距=频率,计算每组的频率,根据所有频率之和为1,计算出a的值;第()问,利用高×组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率×样本容量=频数,计算所求人数;第()问,将前5组的频率之和与前4组的频率之和进行比较,得出2≤x<2.5,再估计月均用水量的中位数.

试题解析:()由频率分布直方图,可知:月均用水量在[0,0.5)的频率为0.08×0.5=0.04.

同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.080.210.250.060.040.02.

1–0.04+0.08+0.21+0.25+0.06+0.04+0.02=0.5×a+0.5×a

解得a=0.30.

)由(),100位居民月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.

由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12="36" 000.

)设中位数为x.

因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.730.5

而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5

所以2≤x<2.5.

0.50×x–2=0.5–0.48,解得x=2.04.

故可估计居民月均用水量的中位数为2.04.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .若gx)存在2个零点,则a的取值范围是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式,对满足的一切实数都成立,则实数的取值范围为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点且不垂直于轴的直线与椭圆相交于两点.

1)求椭圆的方程;

2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】写出下列命题的否定,并判断真假:

(1)不论取何实数,方程必有实数根;

(2)所有末位数字是0或5的整数都能被5整除;

(3)某些梯形的对角线互相平分;

(4)被8整除的数能被4整除.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:

满意

不满意

男顾客

40

10

女顾客

30

20

1)分别估计男、女顾客对该商场服务满意的概率;

2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?

附:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校欲在甲、乙两店采购某款投影仪,该投影仪原价为每台2000元,甲店用如下方法促销:买一台单价为1950元,买二台单价为1900元,每多买一台,则所买各台单价均再减50元,但最低不能低于1200元;乙店一律按原售价的80%促销,学校需要购买台投影仪,若在甲店购买费用为元,若在乙店购买费用记为.

1)分别求出的解析式;

2)当购买台时,在哪家店买更省钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“双十一网购狂欢节”源于淘宝商城(天猫)2009年11月11 日举办的促销活动,当时参与的商家数量和促销力度均有限,但营业额远超预想的效果,于是11月11日成为天猫举办大规模促销活动的固定日期.如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商分析近8年“双十一”期间的宣传费用(单位:万元)和利润(单位:十万元)之间的关系,得到下列数据:

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

(1)请用相关系数说明之间是否存在线性相关关系(当时,说明之间具有线性相关关系);

(2)根据(1)的判断结果,建立之间的回归方程,并预测当时,对应的利润为多少(精确到0.1).

附参考公式:回归方程中最小二乘估计分别为

,相关系数

参考数据:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙3人均以游戏的方式决定是否参加学校音乐社团、美术社团,游戏规则为:

①先将一个圆8等分(如图),再将8个等分点,分别标注在8个相同的小球上,并将这8个小球放入一个不透明的盒子里,每个人从盒内随机摸出两个小球、然后用摸出的两个小球上标注的分点与圆心构造三角形.若能构成直角三角形,则两个社团都参加;若能构成锐角三角形,则只参加美术社团;若能构成钝角三角形,则只参加音乐社团;若不能构成三角形,则两个社团都不参加.

②前一个同学摸出两个小球记录下结果后,把两个小球都放回盒内,下一位同学再从盒中随机摸取两个小球。

(1)求甲能参加音乐社团的概率;

(2)记甲、乙、丙3人能参加音乐社团的人数为随机变量,求的分布列、数学期望和方差

查看答案和解析>>

同步练习册答案