精英家教网 > 高中数学 > 题目详情

(浙江卷理10)如图,AB是平面的斜线段,A为斜足,若点P在平面内运动,使得△ABP的面积为定值,则动点P的轨迹是

(A)圆                      (B)椭圆        

(C)一条直线                (D)两条平行直线

解析:本小题其实就是一个平面斜截一个圆柱表面的问题。

考虑到三角形面积为定值,底边一定,从而P到直线AB的距离为定值,若忽略平面的限制,则P轨迹类似为一以AB为轴心的圆柱面,加上后者平面的交集,轨迹为椭圆!

    还可以采取排除法,直线是不可能的,在无穷远处,点到直线的距离为无穷大,故面积也为无穷大,从而排除C与D,又题目在斜线段下标注重点符号,从而改成垂直来处理,轨迹则为圆,故剩下椭圆为答案!

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(05年浙江卷理)(14分)

如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,OP⊥底面ABC.

(Ⅰ)求证:OD∥平面PAB;

(Ⅱ)当k=时,求直线PA与平面PBC所成角的大小;

   (Ⅲ) 当k取何值时,O在平面PBC内的射影恰好为△PBC的重心?

查看答案和解析>>

科目:高中数学 来源: 题型:

(05年浙江卷理)(14分)

如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,|MA1|∶|A1F1|=2∶1.

   (Ⅰ)求椭圆的方程;

   (Ⅱ)若直线l1:x=m(|m|>1),P为l1上的动点,使∠F1PF2最大的点P记为Q,求点Q的坐标(用m表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(浙江卷理10)如图,AB是平面的斜线段,A为斜足,若点P在平面内运动,使得△ABP的面积为定值,则动点P的轨迹是

(A)圆                      (B)椭圆        

(C)一条直线                (D)两条平行直线

查看答案和解析>>

同步练习册答案