精英家教网 > 高中数学 > 题目详情
6.如图,三棱柱ABC-A1B1C1中,AC⊥BC,AB⊥BB1,AC=BC=BB1,D为AB的中点,且CD⊥DA1
(I)求证:BC1∥平面DCA1
(II)求证:平面ABC⊥平面ABB1A1
(III)求BC1与平面ABB1A1所成角的大小.

分析 (I)连接AC1与A1C交于点K,连接DK.根据三角形中位线定理,易得到DK∥BC1,再由线面平行的判定定理得到BC1∥平面DCA1
(II)由已知条件推导出CD⊥AB,CD⊥DA1,由此能证明平面ABC⊥平面ABB1A1
(III)由AC=BC,D为AB的中点,取A1B1的中点E,又D为AB的中点,得到DCC1E是平行四边形,则∠EBC1即为BC1与平面ABB1A1所成角的二面角,解三角形即可求出答案.

解答 解:(I)证明:如图一,连接AC1与A1C交于点K,连接DK.
在△ABC1中,D、K为中点,∴DK∥BC1
又DK?平面DCA1,BC1?平面DCA1
∴BC1∥平面DCA1


(II)证明:∵AC=BC,D为AB中点,
∴CD⊥AB,又CD⊥DA1
∴CD⊥面AA1B1B,
又∵CD?平面ABC,∴平面A1B1B⊥平面ABC.
(III)取A1B1的中点E,又D为AB的中点,∴DE、BB1、CC1平行且相等,
∴DCC1E是平行四边形,∴C1E、CD平行且相等.
又CD⊥平面ABB1A1,∴C1E⊥平面ABB1A1,∴∠EBC1即所求角,
由前面证明知CD⊥平面ABB1A1,∴CD⊥BB1
又AB⊥BB1,AB∩CD=D,∴BB1⊥平面ABC,∴此三棱柱为直棱柱.
设AC=BC=BB1=2,∴$B{C_1}=2\sqrt{2}$,$E{C_1}=\sqrt{2}$,∠EBC1=30°.

点评 本题主要考查线面平行以及面面垂直的判断,以及线面角的求解,根据线面平行和面面垂直的判定定理以及利用定义法求出线面角的平面角是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=ln2x,则f′(x)=(  )
A.$\frac{1}{4x}$B.$\frac{1}{2x}$C.$\frac{2}{x}$D.$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知三棱柱ABC-A1B1C1中,CA=CB,侧面AA1B1B是菱形,且∠ABB1=60°.
(I)求证:AB⊥B1C;
(Ⅱ)若AB=B1C=2,BC=$\sqrt{2}$,求二面角B-AB1-C1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.投掷两颗质地均匀的骰子,则向上的点数之和为5的概率等于$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=(-2)x-x+1.当x依次取前6个自然数时,f(x)的函数值列是{-2,3,-10,13,-36,59}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知三棱锥P-ABC的顶点P在平面ABC内的射影为点H,侧棱PA=PB=PC,点O为三棱锥P-ABC的外接球O的球心,AB=8,AC=6,已知$\overrightarrow{AO}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$+$\frac{1}{{1+\sqrt{3}}}$$\overrightarrow{HP}$,且λ+μ=1,则球O的表面积为150π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在极坐标系中,与圆ρ=4sinθ相切的一条直线的方程为(  )
A.ρcosθ=$\frac{1}{2}$B.ρcosθ=2C.ρ=4sin(θ+$\frac{π}{3}$)D.ρ=4sin(θ-$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O为AC中点,则直线A1C与平面A1AB所成角的正弦值为(  )
A.$\frac{3}{5}$B.$\frac{\sqrt{21}}{7}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,平行四边形ABCD中,AB=1,AD=4,CE=$\frac{1}{3}$CB.CF=$\frac{2}{3}$CD,∠DAB=60°,求$\overrightarrow{AC}$•$\overrightarrow{FE}$的值.

查看答案和解析>>

同步练习册答案