精英家教网 > 高中数学 > 题目详情
12.已知等比数列{an}中,a1-a3+a5=2,a3-a5+a7=5,那么a5-a7+a9=(  )
A.8B.15C.25D.$\frac{25}{2}$

分析 根据等比数列的通项公式化简已知的两个等式,整体代入后即可求出q2的值,即可求出所需的结果.

解答 解:等比数列{an}中,
a1-a3+a5=2,
a3-a5+a7=q2(a1-a3+a5)=5,
∴q2=$\frac{5}{2}$;
∴a5-a7+a9=q2(a3-a5+a7)=$\frac{5}{2}$×5=$\frac{25}{2}$.
故选:D.

点评 本题考查了等比数列通项公式的性质与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.(1)若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,求a3
(2)三件产品中含有两件正品a,b和一件次品c,每次任取一件,按以下方式连取两次,分别求恰有一件次品的概率.①取后不放回;  ②取后放回.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.用定义证明函数y=x+$\frac{1}{x}$在(1,+∞)上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.既要使关于x的不等式x2+(m-$\frac{1}{2}$)x-$\frac{7}{16}$≤0有实数解,又要使关于x的方程(2m+3)x2+mx+$\frac{m-2}{4}$=0有实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.到点A(-1,0)和直线x=3距离相等的点的轨迹方程是y2=-8x+8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在直角坐标系中画出下列双曲线的草图,并求实轴和虚轴的长、焦距、离心率.
(1)$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1;
(2)16x2-9y2=-144.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数f(1og2x)=x-$\frac{1}{x}$.
(1)求f(x)的解析式;
(2)求证:函数f(x)为奇函数;
(3)若实数m满足:f(1-m)+f(1-m2)<0.求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知p:函数y=lg(x2+mx+1)的值域为R.q:函数y=lg[4x2+4(m-2)x+1]的定义域为R.若p∨q为真,p∧q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.解关于x的不等式:(x-a)(x2-x-2)<0,其中a∈R.

查看答案和解析>>

同步练习册答案