精英家教网 > 高中数学 > 题目详情

若函数f(x)=数学公式在区间(1,4)内为减函数,在区间(6,+∞)上为增函数.
(1)试求实数a的取值范围.
(2)若a=2,求f(x)=c有三个不同实根时,c的取值范围.
(说明:第二问能用f(x)表达即可,不必算出最结果.)

解:(1)∵函数f(x)=
∴f′(x)=x2-ax+a2-13,∵f(x)在区间(1,4)内为减函数,在区间(6,+∞)上为增函数.
∴f′(x)=x2-ax+a2-13≤0在区间(6,+∞)上恒成立,
f′(x)=x2-ax+a2-13≥0在区间(6,+∞)上恒成立,
由f′(x)=x2-ax+a2-13开口向上,
∴只需

∴a∈[1,3]
∴a的取值范围为[1,3].
(2)∵a=2,f(x)=
∴f′(x)=x2-2x-9,
∴令f′(x)=x2-2x-9≥0即x≤1-或x≥1+
∴f(x)的增区间为(-∞,1-),(1+,+∞),减区间为(1-,1+

X
y’+0-0+
y极大值极小值
∴f(x)的大致图象如图所示:
令y=c,则由图可知,当
分析:(1)对f(x)求导,由已知条件函数f(x)=在区间(1,4)内为减函数,在区间(6,+∞)上为增函数,将问题转化为f′(x)=x2-ax+a2-13≤0在区间(1,4)上恒成立,和f′(x)=x2-ax+a2-13≥0在区间(1,4)上恒成立,两个恒成立问题,从而求解;
(2)把a=2代入f(x),然后求导,求出f(x)的单调区间,利用数形结合的思想,画出图形进行求解.
点评:此题考查利用导数研究函数的单调性,第一问比较新颖,已知单调区间来a的范围,利用了转化的思想,是一道综合性比较强的题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•香洲区模拟)已知f(x)=3x2-x+m,(x∈R),g(x)=lnx
(1)若函数 f(x)与 g(x)的图象在 x=x0处的切线平行,求x0的值;
(2)求当曲线y=f(x)与y=g(x)有公共切线时,实数m的取值范围;并求此时函数F(x)=f(x)-g(x)在区间
13
 , 1 ]
上的最值(用m表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•武进区模拟)设函数f(x)=ax2+bx+1,a>0,b∈R 的最小值为-a,f(x)=0两个实根为x1、x2
(1)求x1-x2的值;
(2)若关于x的不等式f(x)<0解集为A,函数f(x)+2x在A上不存在最小值,求a的取值范围;
(3)若-2<x1<0,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•南汇区二模)若函数f(x)=ax+1-2a在[-1,1]上存在x0,使f(x0)=0(x0≠±1),则a的取值范围是
1
3
,1)
1
3
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区二模)设函数f(x)=
ax
x2+b
(a>0)

(1)若函数f(x)在x=-1处取得极值-2,求a,b的值;
(2)若函数f(x)在区间(-1,1)内单调递增,求b的取值范围;
(3)在(1)的条件下,若P(x0,y0)为函数f(x)=
ax
x2+b
图象上任意一点,直线l与f(x)的图象切于点P,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宝坻区一模)已知函数f(x)=ax3+bx2的图象经过点A(1,4),且在点A处的切线恰好与直线9x-y+3=0平行.
(Ⅰ)求实数a,b的值;
(Ⅱ)若函数f(x)在区间[m,m+1]上单调递增,求实数m的取值范围.

查看答案和解析>>

同步练习册答案