精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱中, 平面 .过的平面交于点,交于点.

(l)求证: 平面

(Ⅱ)求证:

(Ⅲ)记四棱锥的体积为,三棱柱的体积为.若,求的值.

【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析;(Ⅲ) .

【解析】试题分析:(l)因为平面由线面垂直的性质可得根据菱形的性质可得利用线面垂直的判定定理可得平面() 平面,所以 平面利用线面平行的性质定理可得() 记三棱锥的体积为,三棱柱的体积为先证明,所以 结合 可得 而三棱柱与三棱柱等高由此得

试题解析:(1) 因为 平面所以

在三棱柱中,因为 ,所以 四边形为菱形,

所以 所以 平面

2)在 三棱柱中,

因为 平面所以 平面

因为 平面平面所以

3记三棱锥的体积为,三棱柱的体积为.

因为三棱锥与三棱柱同底等高,

所以 , 所以 .

因为 , 所以 . 因为 三棱柱与三棱柱等高,

所以 △的面积之比为, 所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知不等式|y4||y|2x对任意实数xy都成立则常数a的最小值为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,∠ADC=90°,CDABADCDAB=2,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体DABC.

(1)求证:AD⊥平面BCD

(2)求三棱锥CABD的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的焦点的坐标为 的坐标为且经过点 .

1)求椭圆的方程;

(2)设过的直线与椭圆交于两不同点,在椭圆上是否存在一点使四边形为平行四边形?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着“中华好诗词”节目的播出,掀起了全民诵读传统诗词经典的热潮.某社团为调查大学生对于“中华诗词”的喜好,从甲、乙两所大学各随机抽取了40名学生,记录他们每天学习“中华诗词”的时间,并整理得到如下频率分布直方图:

根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级 :

(Ⅰ)从甲大学中随机选出一名学生试估计其“爱好”中华诗词的概率;

()从两组“痴迷”的同学中随机选出2人,记为选出的两人中甲大学的人数,求的分布列和数学期望

()试判断选出的这两组学生每天学习“中华诗词”时间的平均值的大小,及方差的大小.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)求曲线在点处的切线方程;

(Ⅱ)求证:存在唯一的,使得曲线在点处的切线的斜率为

(Ⅲ)比较的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列中, 成等差数列;数列中的前项和为 .

(1)求数列的通项公式;

(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在小明的婚礼上,为了活跃气氛,主持人邀请10位客人做一个游戏.第一轮游戏中,主持人将标有数字1,2,…,10的十张相同的卡片放入一个不透明箱子中,让客人依次去摸,摸到数字6,7,…,10的客人留下,其余的淘汰,第二轮放入1,2,…,5五张卡片,让留下的客人依次去摸,摸到数字3,4,5的客人留下,第三轮放入1,2,3三张卡片,让留下的客人依次去摸,摸到数字2,3的客人留下,同样第四轮淘汰一位,最后留下的客人获得小明准备的礼物.已知客人甲参加了该游戏.

(1)求甲拿到礼物的概率;

(2)设表示甲参加游戏的轮数,求的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 是正三角形, 是等腰三角形,

(1)求证:

(2)若 ,平面平面,直线与平面所成的角为45°,求二面角的余弦值.

查看答案和解析>>

同步练习册答案