精英家教网 > 高中数学 > 题目详情
在空间直角坐标系中,方程表示中心在原点、其轴与坐标轴重合的某椭球面的标准方程.分别叫做椭球面的长轴长,中轴长,短轴长.类比在平面直角坐标系中椭圆标准方程的求法,在空间直角坐标系中,若一椭球面的中心在原点、其轴与坐标轴重合,平面截椭球面所得椭圆的方程为,且过点M,则此椭球面的标准方程为________    
解:因为在空间直角坐标系中,方程表示中心在原点、其轴与坐标轴重合的某椭球面的标准方程.分别叫做椭球面的长轴长,中轴长,短轴长.类比在平面直角坐标系中椭圆标准方程的求法,在空间直角坐标系中,若一椭球面的中心在原点、其轴与坐标轴重合,平面截椭球面所得椭圆的方程为,且过点M,则此椭球面的标准方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右顶点为,过的焦点且垂直长轴的弦长为

(I)求椭圆的方程;
(II)设抛物线的焦点为F,过F点的直线交抛物线与A、B两点,过A、B两点分别作抛物线的切线交于Q点,且Q点在椭圆上,求面积的最值,并求出取得最值时的抛物线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设平面内两定点,直线相交于点,且它们的斜率之积为定值
(I)求动点的轨迹的方程;
(II)设,过点作抛物线的切线交曲线两点,求的面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线的焦点的直线交抛物线于两点,点是原点,若,则的面积为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

从抛物线上一点引其准线的垂线,垂足为,设抛物线的焦点为,且,则的面积为           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右焦点分别是,直线与椭圆交于两点.当时,M恰为椭圆的上顶点,此时△的周长为6.

(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左顶点为A,直线与直线分别相交于点,问当
变化时,以线段为直径的圆被轴截得的弦长是否为定值?若是,求出这个定值,
若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,
则△ABC的面积为       (    )

A.3              B.4             C.5              D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆 )的一个顶点为分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 的直线  与椭圆 交于 , 两点.
(1)求椭圆的方程;
(2)是否存在直线 ,使得 ,若存在,求出直线  的方程;若不存在,说明理由;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线y2=2px的焦点与双曲线的右焦点重合,则p的值为      .

查看答案和解析>>

同步练习册答案