精英家教网 > 高中数学 > 题目详情
如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则BB1与平面AB1C1所成的角的大小为
30°
30°
分析:取B1C1中点为D,连接AD,A1D,证明AA1与平面AB1C1所成角为∠A1AD,AA1与平面AB1C1所成角即是BB1与平面AB1C1所成角,即可得到结论.
解答:解:取B1C1中点为D,连接AD,A1D
∵侧棱垂直于底面,底边是边长为2的正三角形
∴三棱柱ABC-A1B1C1是正三棱柱,
∴BB1∥AA1
∴AA1与平面AB1C1所成角即是BB1与平面AB1C1所成角
∵B1C1⊥AD,B1C1⊥AA1
∴B1C1⊥平面AA1D
∴平面AA1D⊥平面AB1C1
∴AA1与平面AB1C1所成角为∠A1AD
∵AA1=3,A1D=
3

∴tan∠A1AD=
A1D
AA1
=
3
3

∴∠A1AD=30°
∴BB1与平面AB1C1所成角为30°
故答案为:30°
点评:本题考查线面角,考查学生分析解决问题的能力,正确作出线面角是关键.作二面角的平面角时,有时可以借助转化换位置法作图,如本题就采用了这一技巧
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱柱ABC-A'B'C'中,若E、F分别为AB、AC的中点,平面EB'C'F将三棱柱分成体积为V1、V2的两部分,那么V1:V2为(  )
A、3:2B、7:5C、8:5D、9:5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,A1A=AC=2,BC=1,AB=
5
,则此三棱柱的侧视图的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,四边形A1ABB1为菱形,∠A1AB=60°,四边形BCC1B1为矩形,若AB⊥BC且AB=4,BC=3
(1)求证:平面A1CB⊥平面ACB1
(2)求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•通州区一模)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,AB=2
2
,CC1=4,M是棱CC1上一点.
(Ⅰ)求证:BC⊥AM;
(Ⅱ)若N是AB上一点,且
AN
AB
=
CM
CC1
,求证:CN∥平面AB1M;
(Ⅲ)若CM=
5
2
,求二面角A-MB1-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC⊥BC,E分别在线段B1C1上,B1E=3EC1,AC=BC=CC1=4.
(1)求证:BC⊥AC1
(2)试探究:在AC上是否存在点F,满足EF∥平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由.

查看答案和解析>>

同步练习册答案