精英家教网 > 高中数学 > 题目详情
18.过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F(c,0)作x轴的垂线,与椭圆C在第一象限内交于点A,过A作直线x=$\frac{{a}^{2}}{c}$的垂线,垂足为B,|AF|=$\frac{\sqrt{3}}{3}$,|AB|=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为圆E:x2+y2=4上任意一点,过点P作椭圆C的两条切线l1、l2,设l1、l2分别交圆E于点M、N,证明:MN为圆E的直径.

分析 (Ⅰ)由题意可知:$\frac{b^2}{a}=\frac{{\sqrt{3}}}{3},\frac{a^2}{c}-c=\frac{{\sqrt{2}}}{2}$即可求得a和b的值,求得椭圆方程;
(Ⅱ)设过点P 的切线方程为y-y0=k(x-x0),代入椭圆方程,由△=0,求得$(1-\frac{1}{3}{x_0}^2){k^2}+\frac{2}{3}{x_0}{y_0}k+\frac{1}{3}-\frac{1}{3}{y_0}^2=0$,则由韦达定理可知:${k_1}{k_2}=\frac{{1-{y_0}^2}}{{3-{x_0}^2}}=\frac{{1-{y_0}^2}}{{{y_0}^2-1}}=-1$,即l1⊥l2,∠MPN=90°,当l1 或l2 的斜率不存在时,必是${x_0}^2=3$ 或${y_0}^2=1$,$P(±\sqrt{3},±1)$,此时一条切线与x 轴垂直,一条切线与x 轴平行,仍有l1⊥l2 即∠MPN=90°.

解答 解:(Ⅰ)由题意可知:$\frac{b^2}{a}=\frac{{\sqrt{3}}}{3},\frac{a^2}{c}-c=\frac{{\sqrt{2}}}{2}$,…2分
∴$a=\sqrt{3},b=1,c=\sqrt{2}$,
$\therefore$ 椭圆C 的方程为$\frac{x^2}{3}+{y^2}=1$;…4分
(Ⅱ)设P(x0,y0),当切线l1,l2 的斜率均存在时,分别设为k1,k2
设过点P 的切线方程为y-y0=k(x-x0),
与C的方程联立得$(\frac{1}{3}+{k^2}){x^2}+2({y_0}-k{x_0})kx+{({y_0}-k{x_0})^2}-1=0$,
则$△=4{k^2}{({y_0}-k{x_0})^2}-4({k^2}+\frac{1}{3})[{({y_0}-k{x_0})^2}-1]=0$,…6分
即${k^2}+\frac{1}{3}-\frac{1}{3}{({y_0}-k{x_0})^2}=0$,整理得$(1-\frac{1}{3}{x_0}^2){k^2}+\frac{2}{3}{x_0}{y_0}k+\frac{1}{3}-\frac{1}{3}{y_0}^2=0$,…8分
$\therefore$ ${k_1}{k_2}=\frac{{1-{y_0}^2}}{{3-{x_0}^2}}=\frac{{1-{y_0}^2}}{{{y_0}^2-1}}=-1$,即l1⊥l2,∠MPN=90°;…10分
当l1 或l2 的斜率不存在时,必是${x_0}^2=3$ 或${y_0}^2=1$,
又${x_0}^2+{y_0}^2=4$,
∴$P(±\sqrt{3},±1)$,此时一条切线与x 轴垂直,一条切线与x 轴平行,仍有l1⊥l2 即∠MPN=90°;…12分
综上,对任意点P,MN 为圆E 的直径.

点评 本题考查椭圆的简单几何性质,考查直线与椭圆的位置关系,韦达定理的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F的坐标为(1,0),且椭圆上任意一点到两焦点的距离之和为4
(Ⅰ)求椭圆C的标准方程
(Ⅱ)过右焦点F的直线l与椭圆C相交于P,Q两点,点Q关于x轴的对称点为Q′,试问△FPQ′的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.
(I)求椭圆C的方程;
(II)设经过F2的直线m与曲线C交于P、Q两点,若${\overrightarrow{QF}_2}=2\overrightarrow{{F_2}P}$,求直线m的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平面直角坐标系xOy中,不等式组$\left\{\begin{array}{l}{(x-y-1)(x+y-1)≥0}\\{-1≤x≤3}\end{array}\right.$表示的平面区域的面积为(  )
A.4B.8C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.二项式(x$\sqrt{x}$-$\frac{1}{x}$)5的展开式中常数项为-10.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知θ是第四象限角,且$sin(θ+\frac{π}{4})=\frac{3}{5}$,则cosθ=$\frac{{7\sqrt{2}}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设f(x)=asin 2x+bcos 2x,其中a,b∈R,ab≠0.若f(x)≤|f($\frac{π}{6}$)|对一切x∈R恒成立,则以下结论正确的是①②④(写出所有正确结论的编号).
①$f(\frac{5π}{12})=0$;
②$|{f(\frac{7π}{12})}$|≥$|{f(\frac{π}{3})}$|;
③f(x)的单调递增区间是(kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$)(k∈Z);
④f(x)既不是奇函数也不是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某车间加工零件的数量x与加工时间y的统计数据如表:
零件数x(个)182022
加工时间y(分钟)273033
现已求得如表数据的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中的$\stackrel{∧}{b}$值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为102分钟.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线x-y-1=0的倾斜角与其在y轴上的截距分别是(  )
A.135°,1B.45°,-1C.45°,1D.135°,-1

查看答案和解析>>

同步练习册答案