精英家教网 > 高中数学 > 题目详情
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
13
,遇到红灯停留的时间都是2min.
(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(2)求这名学生在上学路上因遇到红灯停留的总时间至多是2min的概率.
分析:(1)学生在前两个路口都没有遇到红灯,在第三个路口遇到红灯,故概率等于(1-p)(1-p)p.
(2)由题意可得,此学生上学路上没有遇到红灯,或只遇到了一个红灯,故所求的概率等于(1-p)4+C41p(1-p).
解答:解:(1)事件A:某路口遇到红灯P=P(A)=
1
3
,到第三个路口首次遇到红灯为P1
P1=(1-P)(1-P)•P=
4
27

(2)该生上学路上遇红灯停留时间至多2min的概率为P2,由题意可得,此学生上学路上没有遇到红灯,
或只遇到了一个红灯,故 P2=(1-P)4+4(1-P)3•P=
16
27
点评:本题考查相互独立的事件的概率,求出该生上学路上遇红灯停留时间至多2min的概率P2,是解题的难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
25
,遇到红灯时停留的时间都是1 min.
求这名学生在上学路上因遇到红灯停留的总时间至多是2 min的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
1
3
,遇到红灯时停留的时间都是2min,则这名学生在上学路上因遇到红灯停留的总时间恰好是4min的概率
8
27
8
27

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
2
5
,遇到红灯时停留的时间都是1min,则这名学生在上学路上因遇到红灯停留的总时间至多是3min的概率是
609
625
609
625

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
13
,遇到红灯时停留的时间都是2分钟.
(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率.
(2)这名学生在上学路上因遇到红灯停留的总时间至多是4分钟的概率.

查看答案和解析>>

同步练习册答案