精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两人进行某项对抗性游戏,采用“七局四胜”制,即先赢四局者为胜,若甲、乙两人水平相当,且已知甲先赢了前两局.

求乙取胜的概率;

记比赛局数为X,求X的分布列及数学期望

【答案】(I);(II)详见解析

【解析】

乙取胜有两种情况一是乙连胜四局,二是第三局到第六局中乙胜三局,第七局乙胜,由互斥事件的概率公式与根据独立事件概率公式能求出乙胜概率由题意得,5,6,7,结合组合知识,利用独立事件概率公式及互斥事件的概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.

乙取胜有两种情况

一是乙连胜四局,其概率

二是第三局到第六局中乙胜三局,第七局乙胜,

其概率

乙胜概率为

由题意得,5,6,7,

所以的分布列为

4

5

6

7

P

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为xkm,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在的 中点时,对城A和城B的总影响度为0.065.
(1)将y表示成x的函数;
(2)讨论(1)中函数的单调性,并判断弧 上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】目前,学案导学模式已经成为教学中不可或缺的一部分,为了了解学案的合理使用是否对学生的期末复习有着重要的影响,我校随机抽取100名学生,对学习成绩和学案使用程度进行了调查,统计数据如表所示:

善于使用学案

不善于使用学案

总计

学习成绩优秀

40

学习成绩一般

30

总计

100

参考公式: ,其中n=a+b+c+d.
参考数据:

P(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

已知随机抽查这100名学生中的一名学生,抽到善于使用学案的学生概率是0.6.
(1)请将上表补充完整(不用写计算过程);
(2)试运用独立性检验的思想方法分析:有多大的把握认为学生的学习成绩与对待学案的使用态度有关?
(3)利用分层抽样的方法从善于使用学案的同学中随机抽取6人,从这6人中抽出3人继续调查,设抽出学习成绩优秀的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若方程|x2﹣2x﹣1|﹣t=0有四个不同的实数根x1、x2、x3、x4,且x1<x2<x3<x4 , 则2(x4﹣x1)+(x3﹣x2)的取值范围是(
A.(8,6
B.(6 ,4
C.[8,4 ]
D.(8,4 ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某水泥厂销售工作人员根据以往该厂的销售情况,绘制了该厂日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求未来3天内,连续2天日销售量不低于8吨,另一天日销售量低于8吨的概率;
(2)用X表示未来3天内日销售量不低于8吨的天数,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,圆的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的参数方程为为参数)

(1)求圆的直角坐标方程和直线的普通方程;

(2)若直线与圆相切,求实数的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|cosx|sinx,给出下列五个说法:
①f( π)=﹣
②若|f(x1)|=|f(x2)|,则x1=x2+kπ(k∈Z);
③f(x)在区间[﹣ ]上单调递增;
④函数f(x)的周期为π.
⑤f(x)的图象关于点( ,0)成中心对称.
其中正确说法的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为 (α为参数)M是C1上的动点,P点满足 =2 ,P点的轨迹为曲线C2
(1)求C2的方程;
(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ= 与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.

查看答案和解析>>

同步练习册答案