已知是公比为的等比数列,且成等差数列.
⑴求q的值;
⑵设是以2为首项,为公差的等差数列,其前项和为,当n≥2时,比较 与的大小,并说明理由.
科目:高中数学 来源: 题型:解答题
设数列{bn}满足bn+2=-bn+1-bn(n∈N*),b2=2b1.
(1)若b3=3,求b1的值;
(2)求证数列{bnbn+1bn+2+n}是等差数列;
(3)设数列{Tn}满足:Tn+1=Tnbn+1(n∈N*),且T1=b1=-,若存在实数p,q,对任意n∈N*都有p≤T1+T2+T3+…+Tn<q成立,试求q-p的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设为数列的前项和,对任意的,都有(为正常数).
(1)求证:数列是等比数列;
(2)数列满足,,求数列的通项公式;
(3)在满足(2)的条件下,求数列的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列的前项和为,,是与的等差中项().
(Ⅰ)证明数列为等比数列;
(Ⅱ)求数列的通项公式;
(Ⅲ)是否存在正整数,使不等式()恒成立,若存在,求出的最大值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设数列{an}是等差数列,数列{bn}的前n项和Sn满足且
(Ⅰ)求数列{an}和{bn}的通项公式:
(Ⅱ)设Tn为数列{Sn}的前n项和,求Tn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com