精英家教网 > 高中数学 > 题目详情

已知是公比为的等比数列,且成等差数列.
⑴求q的值;
⑵设是以2为首项,为公差的等差数列,其前项和为,当n≥2时,比较 与的大小,并说明理由.

(1)(2)详见解析.

解析试题分析:(1)等比数列中的等差数列问题,解题关键要根据题意列方程,该题可利用等差中项列方程,可得的值;(2)求出等差数列的前n项和和通项公式,可以根据解析式的特点选择作商比较或者作差比较法,的范围要注意.
试题解析:(1)由题设
.
(2)若
 故


故对于,当时,;当时,;当时,.
考点:1、等差数列的通项公式和前项和;2、比较法;3、等比数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设数列{bn}满足bn+2=-bn+1bn(n∈N*),b2=2b1.
(1)若b3=3,求b1的值;
(2)求证数列{bnbn+1bn+2n}是等差数列;
(3)设数列{Tn}满足:Tn+1Tnbn+1(n∈N*),且T1b1=-,若存在实数pq,对任意n∈N*都有pT1T2T3+…+Tnq成立,试求qp的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设递增等差数列的前n项和为,已知的等比中项.
(l)求数列的通项公式;
(2)求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为数列的前项和,对任意的,都有为正常数).
(1)求证:数列是等比数列;
(2)数列满足,求数列的通项公式;
(3)在满足(2)的条件下,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,).
(1)求的值;
(2)是否存在常数,使得数列是一个等差数列?若存在,求的值及的通项公式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列满足 
(Ⅰ)求数列的通项公式;
(Ⅱ)令,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为的等差中项().
(Ⅰ)证明数列为等比数列;
(Ⅱ)求数列的通项公式;
(Ⅲ)是否存在正整数,使不等式)恒成立,若存在,求出的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}是等差数列,数列{bn}的前n项和Sn满足
(Ⅰ)求数列{an}和{bn}的通项公式:
(Ⅱ)设Tn为数列{Sn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,已知.
(Ⅰ)求数列的通项公式;
(Ⅱ)求证:数列是等差数列;
(Ⅲ)设数列满足,求的前n项和.

查看答案和解析>>

同步练习册答案